980 research outputs found

    Network analyses of proteome evolution and diversity

    Full text link
    The mapping of biomolecular interactions reveals that the function of most biological components depends on a web of interrelations with other cellular components, stressing the need for a systems-level view of biological functions. In this work, I explore ways in which the integration of network and genomic information from different organizational levels can lead to a better understanding of cellular systems and components. First, studying yeast, I show that the evolutionary properties of target genes constitute the dominant determinant of transcription factor (TF) evolutionary rate and that this evolutionary modularity is limited to activating regulatory relationships. I also show that targets of fast-evolving TFs show greater evolutionary expression changes and are enriched for niche-specific functions and other TFs. This work highlights the importance of trans-regulatory network evolution in species-specific gene expression and network adaptation. Next, I show that genes either lost or gained across fungal evolution are enriched in TFs and have very different network and genomic properties than universally conserved genes, including, in sharp contrast to other networks, a greater number of transcriptional regulators. Placing genes in the context of their evolutionary life-cycle reveals principles of network integration of gained genes and evidence for the progressive network and functional marginalization of genes as an evolutionary process preceding gene loss. In the final chapter, I study how alternative splicing (AS)-driven expansion of human proteome diversity leads to system-level complexity through the AS-mediated rewiring of the protein-protein interaction network. By overlaying different network and genomic datasets onto the first large-scale isoform-resolution interactome, I found that differentiating between splice variants is essential to capturing the full extent of the network's functional modularity. I also discovered that AS-mediated rewiring preferentially affects tissue-specific genes and that topologically different patterns of rewiring have distinct functional consequences. Furthermore, I found that most rewiring can be traced to the AS of evolutionarily conserved sequence modules, which promote or block interactions and tend to overlap linear motifs and disrupt known domain-domain interactions. Together, this work demonstrates that a network-level perspective and genomic data integration are essential to understanding the evolution and functional diversity of proteomes

    Systems-level analyses identify extensive coupling among gene expression machines

    Get PDF
    Here, we develop computational methods to assess and consolidate large, diverse protein interaction data sets, with the objective of identifying proteins involved in the coupling of multicomponent complexes within the yeast gene expression pathway. From among ∼43 000 total interactions and 2100 proteins, our methods identify known structural complexes, such as the spliceosome and SAGA, and functional modules, such as the DEAD-box helicases, within the interaction network of proteins involved in gene expression. Our process identifies and ranks instances of three distinct, biologically motivated motifs, or patterns of coupling among distinct machineries involved in different subprocesses of gene expression. Our results confirm known coupling among transcription, RNA processing, and export, and predict further coupling with translation and nonsense-mediated decay. We systematically corroborate our analysis with two independent, comprehensive experimental data sets. The methods presented here may be generalized to other biological processes and organisms to generate principled, systems-level network models that provide experimentally testable hypotheses for coupling among biological machines

    Prediction of a gene regulatory network linked to prostate cancer from gene expression, microRNA and clinical data

    Get PDF
    Motivation: Cancer is a complex disease, triggered by mutations in multiple genes and pathways. There is a growing interest in the application of systems biology approaches to analyze various types of cancer-related data to understand the overwhelming complexity of changes induced by the disease

    BisoGenet: a new tool for gene network building, visualization and analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing availability and diversity of omics data in the post-genomic era offers new perspectives in most areas of biomedical research. Graph-based biological networks models capture the topology of the functional relationships between molecular entities such as gene, protein and small compounds and provide a suitable framework for integrating and analyzing omics-data. The development of software tools capable of integrating data from different sources and to provide flexible methods to reconstruct, represent and analyze topological networks is an active field of research in bioinformatics.</p> <p>Results</p> <p>BisoGenet is a multi-tier application for visualization and analysis of biomolecular relationships. The system consists of three tiers. In the data tier, an in-house database stores genomics information, protein-protein interactions, protein-DNA interactions, gene ontology and metabolic pathways. In the middle tier, a global network is created at server startup, representing the whole data on bioentities and their relationships retrieved from the database. The client tier is a Cytoscape plugin, which manages user input, communication with the Web Service, visualization and analysis of the resulting network.</p> <p>Conclusion</p> <p>BisoGenet is able to build and visualize biological networks in a fast and user-friendly manner. A feature of Bisogenet is the possibility to include coding relations to distinguish between genes and their products. This feature could be instrumental to achieve a finer grain representation of the bioentities and their relationships. The client application includes network analysis tools and interactive network expansion capabilities. In addition, an option is provided to allow other networks to be converted to BisoGenet. This feature facilitates the integration of our software with other tools available in the Cytoscape platform. BisoGenet is available at <url>http://bio.cigb.edu.cu/bisogenet-cytoscape/</url>.</p

    Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation

    Get PDF
    The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks

    Identification and Functional Annotation of Alternatively Spliced Isoforms

    Full text link
    Alternative splicing is a key mechanism for increasing the complexity of transcriptome and proteome in eukaryotic cells. A large portion of multi-exon genes in humans undergo alternative splicing, and this can have significant functional consequences as the proteins translated from alternatively spliced mRNA might have different amino acid sequences and structures. The study of alternative splicing events has been accelerated by the next-generation sequencing technology. However, reconstruction of transcripts from short-read RNA sequencing is not sufficiently accurate. Recent progress in single-molecule long-read sequencing has provided researchers alternative ways to help solve this problem. With the help of both short and long RNA sequencing technologies, tens of thousands of splice isoforms have been catalogued in humans and other species, but relatively few of the protein products of splice isoforms have been characterized functionally, structurally and biochemically. The scope of this dissertation includes using short and long RNA sequencing reads together for the purpose of transcript reconstruction, and using high-throughput RNA-sequencing data and gene ontology functional annotations on gene level to predict functions for alternatively spliced isoforms in mouse and human. In the first chapter, I give an introduction of alternative splicing and discuss the existing studies where next generation sequencing is used for transcript identification. Then, I define the isoform function prediction problem, and explain how it differs from better known gene function prediction problem. In the second chapter of this dissertation, I describe our study where the overall transcriptome of kidney is studied using both long reads from PacBio platform and RNA-seq short reads from Illumina platform. We used short reads to validate full-length transcripts found by long PacBio reads, and generated two high quality sets of transcript isoforms that are expressed in glomerular and tubulointerstitial compartments. In the third chapter, I describe our generic framework, where we implemented and evaluated several related algorithms for isoform function prediction for mouse isoforms. We tested these algorithms through both computational evaluation and experimental validation of the predicted ‘responsible’ isoform(s) and the predicted disparate functions of the isoforms of Cdkn2a and of Anxa6. Our algorithm is the first effort to predict and differentiate isoform functions through large-scale genomic data integration. In the fourth chapter, I present the extension of isoform function prediction study to the protein coding isoforms in human. We used a similar multiple instance learning (MIL)-based approach for predicting the function of protein coding splice variants in human. We evaluated our predictions using literature evidence of ADAM15, LMNA/C, and DMXL2 genes. And in the fifth and final chapter, I give a summary of previous chapters and outline the future directions for alternatively spliced isoform reconstruction and function prediction studies.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144017/1/ridvan_1.pd
    corecore