2,290 research outputs found

    Models of everywhere revisited: a technological perspective

    Get PDF
    The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the environmental science of a place, changing the nature of the underlying modelling process, from one in which general model structures are used to one in which modelling becomes a learning process about specific places, in particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of everywhere, models of everything and models at all times, being constantly re-evaluated against the most current evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and nonlinearities. However, the approach has, as yet, not been fully utilised or explored. This paper examines the concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the remaining research questions. The paper concludes by identifying the key elements of a research agenda that should underpin such experimentation and deployment

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Enable High-resolution, Real-time Ensemble Simulation and Data Assimilation of Flood Inundation using Distributed GPU Parallelization

    Full text link
    Numerical modeling of the intensity and evolution of flood events are affected by multiple sources of uncertainty such as precipitation and land surface conditions. To quantify and curb these uncertainties, an ensemble-based simulation and data assimilation model for pluvial flood inundation is constructed. The shallow water equation is decoupled in the x and y directions, and the inertial form of the Saint-Venant equation is chosen to realize fast computation. The probability distribution of the input and output factors is described using Monte Carlo samples. Subsequently, a particle filter is incorporated to enable the assimilation of hydrological observations and improve prediction accuracy. To achieve high-resolution, real-time ensemble simulation, heterogeneous computing technologies based on CUDA (compute unified device architecture) and a distributed storage multi-GPU (graphics processing unit) system are used. Multiple optimization skills are employed to ensure the parallel efficiency and scalability of the simulation program. Taking an urban area of Fuzhou, China as an example, a model with a 3-m spatial resolution and 4.0 million units is constructed, and 8 Tesla P100 GPUs are used for the parallel calculation of 96 model instances. Under these settings, the ensemble simulation of a 1-hour hydraulic process takes 2.0 minutes, which achieves a 2680 estimated speedup compared with a single-thread run on CPU. The calculation results indicate that the particle filter method effectively constrains simulation uncertainty while providing the confidence intervals of key hydrological elements such as streamflow, submerged area, and submerged water depth. The presented approaches show promising capabilities in handling the uncertainties in flood modeling as well as enhancing prediction efficiency

    Applying big data paradigms to a large scale scientific workflow: lessons learned and future directions

    Get PDF
    The increasing amounts of data related to the execution of scientific workflows has raised awareness of their shift towards parallel data-intensive problems. In this paper, we deliver our experience combining the traditional high-performance computing and grid-based approaches with Big Data analytics paradigms, in the context of scientific ensemble workflows. Our goal was to assess and discuss the suitability of such data-oriented mechanisms for production-ready workflows, especially in terms of scalability. We focused on two key elements in the Big Data ecosystem: the data-centric programming model, and the underlying infrastructure that integrates storage and computation in each node. We experimented with a representative MPI-based iterative workflow from the hydrology domain, EnKF-HGS, which we re-implemented using the Spark data analysis framework. We conducted experiments on a local cluster, a private cloud running OpenNebula, and the Amazon Elastic Compute Cloud (AmazonEC2). The results we obtained were analysed to synthesize the lessons we learned from this experience, while discussing promising directions for further research.This work was supported by the Spanish Ministry of Economics and Competitiveness grant TIN-2013-41350-P, the IC1305 COST Action “Network for Sustainable Ultrascale Computing Platforms” (NESUS), and the FPU Training Program for Academic and Teaching Staff Grant FPU15/00422 by the Spanish Ministry of Education

    Couplers for linking environmental models: scoping study and potential next steps

    Get PDF
    This report scopes out what couplers there are available in the hydrology and atmospheric modelling fields. The work reported here examines both dynamic runtime and one way file based coupling. Based on a review of the peer-reviewed literature and other open sources, there are a plethora of coupling technologies and standards relating to file formats. The available approaches have been evaluated against criteria developed as part of the DREAM project. Based on these investigations, the following recommendations are made: ‱ The most promising dynamic coupling technologies for use within BGS are OpenMI 2.0 and CSDMS (either 1.0 or 2.0) ‱ Investigate the use of workflow engines: Trident and Pyxis, the latter as part of the TSB/AHRC project “Confluence” ‱ There is a need to include database standards CSW and GDAL and use data formats from the climate community NetCDF and CF standards. ‱ Development of a “standard” composition which will consist of two process models and a 3D geological model all linked to data stored in the BGS corporate database and flat file format. Web Feature Services should be included in these compositions. There is also a need to investigate other approaches in different disciplines: The Loss Modelling Framework, OASIS-LMF is the best candidate
    • 

    corecore