9,958 research outputs found

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    A Collaborative Computer Aided Diagnosis (C-CAD) System with Eye-Tracking, Sparse Attentional Model, and Deep Learning

    Full text link
    There are at least two categories of errors in radiology screening that can lead to suboptimal diagnostic decisions and interventions:(i)human fallibility and (ii)complexity of visual search. Computer aided diagnostic (CAD) tools are developed to help radiologists to compensate for some of these errors. However, despite their significant improvements over conventional screening strategies, most CAD systems do not go beyond their use as second opinion tools due to producing a high number of false positives, which human interpreters need to correct. In parallel with efforts in computerized analysis of radiology scans, several researchers have examined behaviors of radiologists while screening medical images to better understand how and why they miss tumors, how they interact with the information in an image, and how they search for unknown pathology in the images. Eye-tracking tools have been instrumental in exploring answers to these fundamental questions. In this paper, we aim to develop a paradigm shift CAD system, called collaborative CAD (C-CAD), that unifies both of the above mentioned research lines: CAD and eye-tracking. We design an eye-tracking interface providing radiologists with a real radiology reading room experience. Then, we propose a novel algorithm that unifies eye-tracking data and a CAD system. Specifically, we present a new graph based clustering and sparsification algorithm to transform eye-tracking data (gaze) into a signal model to interpret gaze patterns quantitatively and qualitatively. The proposed C-CAD collaborates with radiologists via eye-tracking technology and helps them to improve diagnostic decisions. The C-CAD learns radiologists' search efficiency by processing their gaze patterns. To do this, the C-CAD uses a deep learning algorithm in a newly designed multi-task learning platform to segment and diagnose cancers simultaneously.Comment: Submitted to Medical Image Analysis Journal (MedIA

    Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review

    No full text
    International audienceProstate cancer is the second most diagnosed cancer of men all over the world. In the last decades, new imaging techniques based on Magnetic Resonance Imaging (MRI) have been developed improving diagnosis.In practise, diagnosis can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In this regard, computer-aided detection and computer-aided diagnosis systemshave been designed to help radiologists in their clinical practice. Research on computer-aided systems specifically focused for prostate cancer is a young technology and has been part of a dynamic field ofresearch for the last ten years. This survey aims to provide a comprehensive review of the state of the art in this lapse of time, focusing on the different stages composing the work-flow of a computer-aidedsystem. We also provide a comparison between studies and a discussion about the potential avenues for future research. In addition, this paper presents a new public online dataset which is made available to theresearch community with the aim of providing a common evaluation framework to overcome some of the current limitations identified in this survey

    Machine Learning on Neutron and X-Ray Scattering

    Get PDF
    Neutron and X-ray scattering represent two state-of-the-art materials characterization techniques that measure materials' structural and dynamical properties with high precision. These techniques play critical roles in understanding a wide variety of materials systems, from catalysis to polymers, nanomaterials to macromolecules, and energy materials to quantum materials. In recent years, neutron and X-ray scattering have received a significant boost due to the development and increased application of machine learning to materials problems. This article reviews the recent progress in applying machine learning techniques to augment various neutron and X-ray scattering techniques. We highlight the integration of machine learning methods into the typical workflow of scattering experiments. We focus on scattering problems that faced challenge with traditional methods but addressable using machine learning, such as leveraging the knowledge of simple materials to model more complicated systems, learning with limited data or incomplete labels, identifying meaningful spectra and materials' representations for learning tasks, mitigating spectral noise, and many others. We present an outlook on a few emerging roles machine learning may play in broad types of scattering and spectroscopic problems in the foreseeable future.Comment: 56 pages, 12 figures. Feedback most welcom

    Machine learning in acoustics: theory and applications

    Full text link
    Acoustic data provide scientific and engineering insights in fields ranging from biology and communications to ocean and Earth science. We survey the recent advances and transformative potential of machine learning (ML), including deep learning, in the field of acoustics. ML is a broad family of techniques, which are often based in statistics, for automatically detecting and utilizing patterns in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given sufficient training data, ML can discover complex relationships between features and desired labels or actions, or between features themselves. With large volumes of training data, ML can discover models describing complex acoustic phenomena such as human speech and reverberation. ML in acoustics is rapidly developing with compelling results and significant future promise. We first introduce ML, then highlight ML developments in four acoustics research areas: source localization in speech processing, source localization in ocean acoustics, bioacoustics, and environmental sounds in everyday scenes.Comment: Published with free access in Journal of the Acoustical Society of America, 27 Nov. 201

    Predictive Modeling of Biomedical Signals Using Controlled Spatial Transformation

    Full text link
    An important paradigm in smart health is developing diagnosis tools and monitoring a patient's heart activity through processing Electrocardiogram (ECG) signals is a key example, sue to high mortality rate of heart-related disease. However, current heart monitoring devices suffer from two important drawbacks: i) failure in capturing inter-patient variability, and ii) incapability of identifying heart abnormalities ahead of time to take effective preventive and therapeutic interventions. This paper proposed a novel predictive signal processing method to solve these issues. We propose a two-step classification framework for ECG signals, where a global classifier recognizes severe abnormalities by comparing the signal against a universal reference model. The seemingly normal signals are then passed through a personalized classifier, to recognize mild but informative signal morphology distortions. The key idea is to develop a novel deviation analysis based on a controlled nonlinear transformation to capture significant deviations of the signal towards any of predefined abnormality classes. Here, we embrace the proven but overlooked fact that certain features of ECG signals reflect underlying cardiac abnormalities before the occurrences of cardiac disease. The proposed method achieves a classification accuracy of 96.6% and provides a unique feature of predictive analysis by providing warnings before critical heart conditions. In particular, the chance of observing a severe problem (a red alarm) is raised by about 5% to 10% after observing a yellow alarm of the same type. Although we used this methodology to provide early precaution messages to elderly and high-risk heart-patients, the proposed method is general and applicable to similar bio-medical signal processing applications.Comment: 13 pages, 7 figures, 7 table

    Statistical mechanics of complex neural systems and high dimensional data

    Full text link
    Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? And second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction, and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks.Comment: 72 pages, 8 figures, iopart.cls, to appear in JSTA

    Deep Learning for Embedding and Integrating Multimodal Biomedical Data

    Get PDF
    Biomedical data is being generated in extremely high throughput and high dimension by technologies in areas ranging from single-cell genomics, proteomics, and transcriptomics (cytometry, single-cell RNA and ATAC sequencing) to neuroscience and cognition (fMRI and PET) to pharmaceuticals (drug perturbations and interactions). These new and emerging technologies and the datasets they create give an unprecedented view into the workings of their respective biological entities. However, there is a large gap between the information contained in these datasets and the insights that current machine learning methods can extract from them. This is especially the case when multiple technologies can measure the same underlying biological entity or system. By separately analyzing the same system but from different views gathered by different data modalities, patterns are left unobserved if they only emerge from the multi-dimensional joint representation of all of the modalities together. Through an interdisciplinary approach that emphasizes active collaboration with data domain experts, my research has developed models for data integration, extracting important insights through the joint analysis of varied data sources. In this thesis, I discuss models that address this task of multi-modal data integration, especially generative adversarial networks (GANs) and autoencoders (AEs). My research has been focused on using both of these models in a generative way for concrete problems in cutting-edge scientific applications rather than the exclusive focus on the generation of high-resolution natural images. The research in this thesis is united around ideas of building models that can extract new knowledge from scientific data inaccessible to currently existing methods

    Deep Learning in Single-Cell Analysis

    Full text link
    Single-cell technologies are revolutionizing the entire field of biology. The large volumes of data generated by single-cell technologies are high-dimensional, sparse, heterogeneous, and have complicated dependency structures, making analyses using conventional machine learning approaches challenging and impractical. In tackling these challenges, deep learning often demonstrates superior performance compared to traditional machine learning methods. In this work, we give a comprehensive survey on deep learning in single-cell analysis. We first introduce background on single-cell technologies and their development, as well as fundamental concepts of deep learning including the most popular deep architectures. We present an overview of the single-cell analytic pipeline pursued in research applications while noting divergences due to data sources or specific applications. We then review seven popular tasks spanning through different stages of the single-cell analysis pipeline, including multimodal integration, imputation, clustering, spatial domain identification, cell-type deconvolution, cell segmentation, and cell-type annotation. Under each task, we describe the most recent developments in classical and deep learning methods and discuss their advantages and disadvantages. Deep learning tools and benchmark datasets are also summarized for each task. Finally, we discuss the future directions and the most recent challenges. This survey will serve as a reference for biologists and computer scientists, encouraging collaborations.Comment: 77 pages, 11 figures, 15 tables, deep learning, single-cell analysi
    corecore