11 research outputs found

    The design and implementation of a multiparadigm programming language.

    Get PDF
    by Chi-keung Luk.Thesis (M.Phil.)--Chinese University of Hong Kong, 1993.Includes bibliographical references (leaves 169-174).Preface --- p.xiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Programming Languages --- p.2Chapter 1.2 --- Programming Paradigms --- p.2Chapter 1.2.1 --- What is a programming paradigm --- p.2Chapter 1.2.2 --- Which came first? Languages or paradigms? --- p.2Chapter 1.2.3 --- Overview of some paradigms --- p.4Chapter 1.2.4 --- A spectrum of paradigms --- p.6Chapter 1.2.5 --- Mulitparadigm systems --- p.7Chapter 1.3 --- The Objectives of this research --- p.8Chapter 2 --- "Studies of the object-oriented, the logic and the functional paradigms" --- p.10Chapter 2.1 --- The Object-Oriented Paradigm --- p.10Chapter 2.1.1 --- Basic components --- p.10Chapter 2.1.2 --- Motivations --- p.11Chapter 2.1.3 --- Some related issues --- p.12Chapter 2.1.4 --- Computational models for object-oriented programming --- p.16Chapter 2.2 --- The Functional Paradigm --- p.18Chapter 2.2.1 --- Basic concepts --- p.18Chapter 2.2.2 --- Lambda calculus --- p.20Chapter 2.2.3 --- The characteristics of functional programs --- p.21Chapter 2.2.4 --- Practicality of functional programming --- p.25Chapter 2.3 --- The Logic Paradigm --- p.28Chapter 2.3.1 --- Relations --- p.28Chapter 2.3.2 --- Logic programs --- p.29Chapter 2.3.3 --- The opportunity for parallelism --- p.30Chapter 2.4 --- Summary --- p.31Chapter 3 --- A survey of some existing multiparadigm languages --- p.32Chapter 3.1 --- Logic + Object-Oriented --- p.33Chapter 3.1.1 --- LogiC++ --- p.33Chapter 3.1.2 --- Intermission --- p.34Chapter 3.1.3 --- Object-Oriented Programming in Prolog (OOPP) --- p.36Chapter 3.1.4 --- Communication Prolog Unit (CPU) --- p.37Chapter 3.1.5 --- DLP --- p.37Chapter 3.1.6 --- Representing Objects in a Logic Programming Language with Scoping Constructs (OLPSC) --- p.39Chapter 3.1.7 --- KSL/Logic --- p.40Chapter 3.1.8 --- Orient84/K --- p.41Chapter 3.1.9 --- Vulcan --- p.42Chapter 3.1.10 --- The Bridge approach --- p.43Chapter 3.1.11 --- Discussion --- p.44Chapter 3.2 --- Functional + Object-Oriented --- p.46Chapter 3.2.1 --- PROOF --- p.46Chapter 3.2.2 --- A Functional Language with Classes (FLC) --- p.47Chapter 3.2.3 --- Common Lisp Object System (CLOS) --- p.49Chapter 3.2.4 --- FOOPS --- p.50Chapter 3.2.5 --- Discussion --- p.51Chapter 3.3 --- Logic + Functional --- p.52Chapter 3.3.1 --- HOPE --- p.52Chapter 3.3.2 --- FUNLOG --- p.54Chapter 3.3.3 --- F* --- p.55Chapter 3.3.4 --- LEAF --- p.56Chapter 3.3.5 --- Applog --- p.57Chapter 3.3.6 --- Discussion --- p.58Chapter 3.4 --- Logic + Functional + Object-Oriented --- p.61Chapter 3.4.1 --- Paradise --- p.61Chapter 3.4.2 --- LIFE --- p.62Chapter 3.4.3 --- UNIFORM --- p.63Chapter 3.4.4 --- G --- p.64Chapter 3.4.5 --- FOOPlog --- p.66Chapter 3.4.6 --- Logic and Objects (L&O) --- p.66Chapter 3.4.7 --- Discussion --- p.67Chapter 4 --- The design of a multiparadigm language I --- p.70Chapter 4.1 --- An Object-Oriented Framework --- p.71Chapter 4.1.1 --- A hierarchy of classes --- p.71Chapter 4.1.2 --- Program structure --- p.71Chapter 4.1.3 --- Parametric classes --- p.72Chapter 4.1.4 --- Inheritance --- p.73Chapter 4.1.5 --- The meanings of classes and methods --- p.75Chapter 4.1.6 --- Objects and messages --- p.75Chapter 4.2 --- The logic Subclasses --- p.76Chapter 4.2.1 --- Syntax --- p.76Chapter 4.2.2 --- Distributed inference --- p.76Chapter 4.2.3 --- Adding functions and expressions to logic programs --- p.77Chapter 4.2.4 --- State modelling --- p.79Chapter 4.3 --- The functional Subclasses --- p.80Chapter 4.3.1 --- The syntax of functions --- p.80Chapter 4.3.2 --- Abstract data types --- p.81Chapter 4.3.3 --- Augmented list comprehensions --- p.82Chapter 4.4 --- The Semantic Foundation of I Programs --- p.84Chapter 4.4.1 --- T1* : Transform functions into Horn clauses --- p.84Chapter 4.4.2 --- T2*: Transform object-oriented features into pure logic --- p.85Chapter 4.5 --- Exploiting Parallelism in I Programs --- p.89Chapter 4.5.1 --- Inter-object parallelism --- p.89Chapter 4.5.2 --- Intra-object parallelism --- p.92Chapter 4.6 --- Discussion --- p.96Chapter 5 --- An implementation of a prototype of I --- p.99Chapter 5.1 --- System Overview --- p.99Chapter 5.2 --- I-to-Prolog Translation --- p.101Chapter 5.2.1 --- Pass 1 - lexical and syntax analysis --- p.101Chapter 5.2.2 --- Pass 2 - Class Table Construction and Semantic Checking --- p.101Chapter 5.2.3 --- Pass 3 - Determination of Multiple Inheritance Precedence --- p.105Chapter 5.2.4 --- Pass 4 - Translation of the directive part --- p.110Chapter 5.2.5 --- Pass 5 - Creation of Prolog source code for an I object --- p.110Chapter 5.2.6 --- Using expressions in logic methods --- p.112Chapter 5.3 --- I-to-LML Translation --- p.114Chapter 5.4 --- The Run-time Handler --- p.117Chapter 5.4.1 --- Object Management --- p.118Chapter 5.4.2 --- Process Management and Message Passing --- p.121Chapter 6 --- Some applications written in I --- p.125Chapter 6.1 --- Modeling of a State Space Search --- p.125Chapter 6.2 --- A Solution to the N-queen Problem --- p.129Chapter 6.3 --- Object-Oriented Modeling of a Database --- p.131Chapter 6.4 --- A Simple Expert System --- p.133Chapter 6.5 --- Summary --- p.138Chapter 7 --- Conclusion and future work --- p.139Chapter 7.1 --- Conclusion --- p.139Chapter 7.2 --- Future Work --- p.141Chapter A --- Language manual --- p.146Chapter A.1 --- Introduction --- p.146Chapter A.2 --- Syntax --- p.146Chapter A.2.1 --- The lexical specification --- p.146Chapter A.2.2 --- The syntax specification --- p.149Chapter A3 --- Classes --- p.152Chapter A.4 --- Object Creation and Method Invocation --- p.153Chapter A.5 --- The logic Subclasses --- p.155Chapter A.6 --- The functional Subclasses --- p.156Chapter A.7 --- Types --- p.158Chapter A.8 --- Mutable States --- p.158Chapter B --- User's guide --- p.160Chapter B.1 --- System Calls --- p.160Chapter B.2 --- Configuration Parameters --- p.162Chapter B.3 --- Errors --- p.163Chapter B.4 --- Implementation Limits --- p.164Chapter B.5 --- How to install the system --- p.164Chapter B.6 --- How to use the system --- p.164Chapter B.7 --- How to recompile the system --- p.166Chapter B.8 --- Directory arrangement --- p.167Chapter C --- List of publications --- p.168Bibliography --- p.16

    Generic Distribution Support for Programming Systems

    Get PDF
    This dissertation provides constructive proof, through the implementation of a middleware, that distribution transparency is practical, generic, and extensible. Fault tolerant distributed services can be developed by using the failure detection abilities of the middleware. By generic we mean that the middleware can be used for many different programming languages and paradigms. Distribution for each kind of language entity is done in terms of consistency protocols, which guarantee that the semantics of the entities are preserved in a distributed setting. The middleware allows new consistency protocols to be added easily. The efficiency of the middleware and the ease of integration are shown by coupling the middleware to a programming system, which encompasses the object oriented, the functional, and the concurrent-declarative programming paradigms. Our measurements show that the distribution middleware is competitive with the most popular distributed programming systems (JavaRMI, .NET, IBM CORBA)

    Don't blame me: The effects of CEO power, board affiliation, and Sarbanes-Oxley on CEO turnover following financial misrepresentation

    Get PDF

    Constructing an organisational climate model to predict potential risk of management fraud

    Get PDF
    Fraudulent behaviour by management has become a global problem that cuts across cultural and ideological divides. Therefore, given the high incidence and cost of fraud internationally and locally, as well as the fact that stakeholders, including shareholders, governments and non-governmental organisations, are increasing the pressure on organisations to manage unethical behaviour more effectively, it is astonishing that fraud per se has not attracted more research efforts. Enron, WorldCom and Arthur Andersen, among others, have underscored the fact that the current modes which are governing companies are not sufficient to protect investors and public interests, because it is easy for otherwise honest people to be swept along in a climate of corruption. The aim of this study was to propose a model to predict potential risk of management fraud based on the organisational climate of the organisation. An interpretative framework was used to develop a conceptual model. Analytical induction and Lawshe’s content validity ratio were applied to validate the conceptualised model. The conceptual model assumes that there are certain organisational climate factors (determinants and dimensions) within an organisation which could indicate the direction of climate within the organisation. The determinants are leadership style, managerial values, trustworthiness, and organisational values. The following dimensions were identified: level of individual autonomy, reward system of organisation, degree of open communication between employees and management, perceived individual pressure, and fairness and innovation. The conceptual model further assumes that, although employees’ acceptance and/or tolerance of unethical behaviour might be high, not all managers will engage in fraud, as the various aspects of the fraud diamond also impose a form of constraint on the organisation. The level of individual constraint as imposed by the fraud diamond is moderated by an individual’s gender, tenure, education and age, which form part of an individual’s capability and comprise the acquired traits of an individual. Apart from these biographical traits, the model includes personal traits that will also have an impact on an individual’s capability. The limitations, practical implications and recommendations for future research are also discussed. This study, not only augments fraud literature, but also contributes to industrial/organisational psychology by studying individual deviance from an organisational perspective.PsychologyD. Phil. (Consulting psychology
    corecore