94 research outputs found

    Current State-of-the-Art of AI Methods Applied to MRI

    Get PDF
    Di Noia, C., Grist, J. T., Riemer, F., Lyasheva, M., Fabozzi, M., Castelli, M., Lodi, R., Tonon, C., Rundo, L., & Zaccagna, F. (2022). Predicting Survival in Patients with Brain Tumors: Current State-of-the-Art of AI Methods Applied to MRI. Diagnostics, 12(9), 1-16. [2125]. https://doi.org/10.3390/diagnostics12092125Given growing clinical needs, in recent years Artificial Intelligence (AI) techniques have increasingly been used to define the best approaches for survival assessment and prediction in patients with brain tumors. Advances in computational resources, and the collection of (mainly) public databases, have promoted this rapid development. This narrative review of the current state-of-the-art aimed to survey current applications of AI in predicting survival in patients with brain tumors, with a focus on Magnetic Resonance Imaging (MRI). An extensive search was performed on PubMed and Google Scholar using a Boolean research query based on MeSH terms and restricting the search to the period between 2012 and 2022. Fifty studies were selected, mainly based on Machine Learning (ML), Deep Learning (DL), radiomics-based methods, and methods that exploit traditional imaging techniques for survival assessment. In addition, we focused on two distinct tasks related to survival assessment: the first on the classification of subjects into survival classes (short and long-term or eventually short, mid and long-term) to stratify patients in distinct groups. The second focused on quantification, in days or months, of the individual survival interval. Our survey showed excellent state-of-the-art methods for the first, with accuracy up to ∼98%. The latter task appears to be the most challenging, but state-of-the-art techniques showed promising results, albeit with limitations, with C-Index up to ∼0.91. In conclusion, according to the specific task, the available computational methods perform differently, and the choice of the best one to use is non-univocal and dependent on many aspects. Unequivocally, the use of features derived from quantitative imaging has been shown to be advantageous for AI applications, including survival prediction. This evidence from the literature motivates further research in the field of AI-powered methods for survival prediction in patients with brain tumors, in particular, using the wealth of information provided by quantitative MRI techniques.publishersversionpublishe

    Assessment of brain cancer atlas maps with multimodal imaging features.

    Get PDF
    BACKGROUND: Glioblastoma Multiforme (GBM) is a fast-growing and highly aggressive brain tumor that invades the nearby brain tissue and presents secondary nodular lesions across the whole brain but generally does not spread to distant organs. Without treatment, GBM can result in death in about 6 months. The challenges are known to depend on multiple factors: brain localization, resistance to conventional therapy, disrupted tumor blood supply inhibiting effective drug delivery, complications from peritumoral edema, intracranial hypertension, seizures, and neurotoxicity. MAIN TEXT: Imaging techniques are routinely used to obtain accurate detections of lesions that localize brain tumors. Especially magnetic resonance imaging (MRI) delivers multimodal images both before and after the administration of contrast, which results in displaying enhancement and describing physiological features as hemodynamic processes. This review considers one possible extension of the use of radiomics in GBM studies, one that recalibrates the analysis of targeted segmentations to the whole organ scale. After identifying critical areas of research, the focus is on illustrating the potential utility of an integrated approach with multimodal imaging, radiomic data processing and brain atlases as the main components. The templates associated with the outcome of straightforward analyses represent promising inference tools able to spatio-temporally inform on the GBM evolution while being generalizable also to other cancers. CONCLUSIONS: The focus on novel inference strategies applicable to complex cancer systems and based on building radiomic models from multimodal imaging data can be well supported by machine learning and other computational tools potentially able to translate suitably processed information into more accurate patient stratifications and evaluations of treatment efficacy

    Radiomics analyses for outcome prediction in patients with locally advanced rectal cancer and glioblastoma multiforme using multimodal imaging data

    Get PDF
    Personalized treatment strategies for oncological patient management can improve outcomes of patient populations with heterogeneous treatment response. The implementation of such a concept requires the identification of biomarkers that can precisely predict treatment outcome. In the context of this thesis, we develop and validate biomarkers from multimodal imaging data for the outcome prediction after treatment in patients with locally advanced rectal cancer (LARC) and in patients with newly diagnosed glioblastoma multiforme (GBM), using conventional feature-based radiomics and deep-learning (DL) based radiomics. For LARC patients, we identify promising radiomics signatures combining computed tomography (CT) and T2-weighted (T2-w) magnetic resonance imaging (MRI) with clinical parameters to predict tumour response to neoadjuvant chemoradiotherapy (nCRT). Further, the analyses of externally available radiomics models for LARC reveal a lack of reproducibility and the need for standardization of the radiomics process. For patients with GBM, we use postoperative [11C] methionine positron emission tomography (MET-PET) and gadolinium-enhanced T1-w MRI for the detection of the residual tumour status and to prognosticate time-to-recurrence (TTR) and overall survival (OS). We show that DL models built on MET-PET have an improved diagnostic and prognostic value as compared to MRI

    Tumor heterogeneity in glioblastoma:a real-life brain teaser

    Get PDF

    Advanced imaging and artificial intelligence for diagnostic and prognostic biomarkers in glioblastoma

    Get PDF
    Conventional magnetic resonance imaging (MRI) has a pivotal role in diagnosis and post-treatment management of glioblastoma, however it has limitations. This work investigates the use of advanced MRI techniques that assess the tumour microenvironment, and artificial intelligence (AI) techniques that compute quantitative features, as potential imaging biomarkers in key clinical issues faced by clinicians, through several retrospective studies. Results show that advanced multiparametric MRI is superior to current standard-of-care imaging for the diagnosis of glioblastoma, and in treatment response assessment. Results of AI techniques on pre-operative imaging show the ability to differentiate between glioblastoma and metastasis with an accuracy of 88.7%, prediction of overall survival with a high level of accuracy, and stratification of patients into high- and low-level groups of MGMT promoter methylation with accuracies between 45-67%. In the early post-treatment phase, AI analysis of imaging can distinguish between disease progression and pseudoprogression with an accuracy of 73.7%, compared to neuroradiologist accuracy of 32.9%. Integrating these techniques into routine clinical practice is essential to improve patient outcomes. Further work is required to validate advanced imaging and AI biomarkers, towards the longer-term goal of using these as clinical decision support tools, to benefit patients with glioblastoma and other brain tumours

    Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine

    Get PDF
    Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computa-tional as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles

    The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology

    Get PDF
    With the rapid development of new technologies, including artificial intelligence and genome sequencing, radiogenomics has emerged as a state-of-the-art science in the field of individualized medicine. Radiogenomics combines a large volume of quantitative data extracted from medical images with individual genomic phenotypes and constructs a prediction model through deep learning to stratify patients, guide therapeutic strategies, and evaluate clinical outcomes. Recent studies of various types of tumors demonstrate the predictive value of radiogenomics. And some of the issues in the radiogenomic analysis and the solutions from prior works are presented. Although the workflow criteria and international agreed guidelines for statistical methods need to be confirmed, radiogenomics represents a repeatable and cost-effective approach for the detection of continuous changes and is a promising surrogate for invasive interventions. Therefore, radiogenomics could facilitate computer-aided diagnosis, treatment, and prediction of the prognosis in patients with tumors in the routine clinical setting. Here, we summarize the integrated process of radiogenomics and introduce the crucial strategies and statistical algorithms involved in current studies

    Radiomic Features to Predict Overall Survival Time for Patients with Glioblastoma Brain Tumors Based on Machine Learning and Deep Learning Methods

    Full text link
    Machine Learning (ML) methods including Deep Learning (DL) Methods have been employed in the medical field to improve diagnosis process and patient’s prognosis outcomes. Glioblastoma multiforme is an extremely aggressive Glioma brain tumor that has a poor survival rate. Understanding the behavior of the Glioblastoma brain tumor is still uncertain and some factors are still unrecognized. In fact, the tumor behavior is important to decide a proper treatment plan and to improve a patient’s health. The aim of this dissertation is to develop a Computer-Aided-Diagnosis system (CADiag) based on ML/DL methods to automatically estimate the Overall Survival Time (OST) for patients with Glioblastoma brain tumors from medical imaging and non-imaging data. This system is developed to enhance and speed-up the diagnosis process, as well as to increase understanding of the behavior of Glioblastoma brain tumors. The proposed OST prediction system is developed based on a classification process to categorize a GBM patient into one of the following three survival time groups: short-term (months), mid-term (10-15 months), and long-term (\u3e15 months). The Brain Tumor Segmentation challenge (BraTS) dataset is used to develop the automatic OST prediction system. This dataset consists of multimodal preoperative Magnetic Resonance Imaging (mpMRI) data, and clinical data. The training data is relatively small in size to train an accurate OST prediction model based on DL method. Therefore, traditional ML methods such as Support Vector Machine (SVM), Neural Network, K-Nearest Neighbor (KNN), Decision Tree (DT) were used to develop the OST prediction model for GBM patients. The main contributions in the perspective of ML field include: developing and evaluating five novel radiomic feature extraction methods to produce an automatic and reliable OST prediction system based on classification task. These methods are volumetric, shape, location, texture, histogram-based, and DL features. Some of these radiomic features can be extracted directly from MRI images, such as statistical texture features and histogram-based features. However, preprocessing methods are required to extract automatically other radiomic features from MRI images such as the volume, shape, and location information of the GBM brain tumors. Therefore, a three-dimension (3D) segmentation DL model based on modified U-Net architecture is developed to identify and localize the three glioma brain tumor subregions, peritumoral edematous/invaded tissue (ED), GD-enhancing tumor (ET), and the necrotic tumor core (NCR), in multi MRI scans. The segmentation results are used to calculate the volume, location and shape information of a GBM tumor. Two novel approaches based on volumetric, shape, and location information, are proposed and evaluated in this dissertation. To improve the performance of the OST prediction system, information fusion strategies based on data-fusion, features-fusion and decision-fusion are involved. The best prediction model was developed based on feature fusions and ensemble models using NN classifiers. The proposed OST prediction system achieved competitive results in the BraTS 2020 with accuracy 55.2% and 55.1% on the BraTS 2020 validation and test datasets, respectively. In sum, developing automatic CADiag systems based on robust features and ML methods, such as our developed OST prediction system, enhances the diagnosis process in terms of cost, accuracy, and time. Our OST prediction system was evaluated from the perspective of the ML field. In addition, preprocessing steps are essential to improve not only the quality of the features but also boost the performance of the prediction system. To test the effectiveness of our developed OST system in medical decisions, we suggest more evaluations from the perspective of biology and medical decisions, to be then involved in the diagnosis process as a fast, inexpensive and automatic diagnosis method. To improve the performance of our developed OST prediction system, we believe it is required to increase the size of the training data, involve multi-modal data, and/or provide any uncertain or missing information to the data (such as patients\u27 resection statuses, gender, etc.). The DL structure is able to extract numerous meaningful low-level and high-level radiomic features during the training process without any feature type nominations by researchers. We thus believe that DL methods could achieve better predictions than ML methods if large size and proper data is available
    corecore