5,670 research outputs found

    Integrating deductive verification and symbolic execution for abstract object creation in dynamic logic

    Get PDF
    We present a fully abstract weakest precondition calculus and its integration with symbolic execution. Our assertion language allows both specifying and verifying properties of objects at the abstraction level of the programming language, abstracting from a specific implementation of object creation. Objects which are not (yet) created never play any role. The corresponding proof theory is discussed and justified formally by soundness theorems. The usage of the assertion language and proof rules is illustrated with an example of a linked list reachability property. All proof rules presented are fully implemented in a version of the KeY verification system for Java programs

    Deductive verification of object-oriented software : dynamic frames, dynamic logic and predicate abstraction

    Get PDF
    Software systems play a central role in modern society, and their correctness is often crucially important. Formal specification and verification are promising approaches for ensuring correctness more rigorously than just by testing. This work presents an approach for deductively verifying design-by-contract specifications of object-oriented programs. The approach is based on dynamic logic, and addresses the challenges of modularity and automation using dynamic frames and predicate abstraction

    Verification-based software-fault detection

    Get PDF
    Software is used in many safety- and security-critical systems. Software development is, however, an error-prone task. In this work new techniques for the detection of software faults (or software "bugs") are described which are based on a formal deductive verification technology. The described techniques take advantage of information obtained during verification and combine verification technology with deductive fault detection and test generation in a very unified way

    Verification-based Software-fault Detection

    Get PDF
    Software is used in many safety- and security-critical systems. Software development is, however, an error-prone task. In this dissertation new techniques for the detection of software faults (or software "bugs") are described which are based on a formal deductive verification technology. The described techniques take advantage of information obtained during verification and combine verification technology with deductive fault detection and test generation in a very unified way

    I Can See Clearly Now: Clairvoyant Assertions for Deadlock Checking

    Get PDF
    Under embargo until: 2023-07-04Static analysers are traditionally used to check various correctness properties of software. In the face of refactorings that can have adverse effects on correctness, developers need to analyse the code after refactoring and possibly revert their changes. Here, we take a different approach: we capture the effect of the Hide Delegate refactoring on programs in the ABS modelling language in terms of the base program, which allows us to predict the correctness of the refactored program. In particular, we focus on deadlock-detection. The actual check is encoded with the help of an additional data structure and assertions. Developers can then attempt to discharge assertions as vacuous with the help of a theorem prover such as KeY. On the one hand, this means that we do not require a specific static analyser nor theorem prover, but rather profit from the strength and advances of modern tool support. On the other hand, developers can choose to rely on existing tests to confirm that no assertion is triggered before executing the actual refactoring. Finally, we argue the correctness of our over-approximation.acceptedVersio

    Combining Static and Dynamic Program Analysis Techniques for Checking Relational Properties

    Get PDF
    Die vorliegende Dissertation ist im Bereich der formalen Verifikation von Software angesiedelt. Sie behandelt die Überprüfung relationaler Eigenschaften von Computerprogrammen, d.h. solche Eigenschaften, die zwei oder mehr Programmausführungen betrachten. Die Dissertation konzentriert sich auf zwei spezifische relationale Eigenschaften: (1) Nichtinterferenz und (2) ob ein Programm ein Slice eines anderen Programms ist. Die Nichtinterferenz-Eigenschaft besagt, dass die Ausführung eines Programms mit den gleichen öffentlichen Eingaben die gleichen öffentlichen Ausgaben produziert und dies unabhängig von den geheimen Eingaben (z.B. eines Passworts) ist. Das bedeutet, dass die geheimen Eingaben die öffentlichen Ausgaben nicht beeinflussen. Programm-Slicing ist eine Technik zur Reduzierung eines Programms durch das Entfernen von Programmbefehlen, sodass ein spezifizierter Teil des Programmverhaltens erhalten bleibt, z.B. der Wert einer Variablen in einer Instruktion in dem Programm. Die Dissertation stellt Frameworks zur Verfügung, die es dem Nutzer ermöglichen, die obigen zwei Eigenschaften für ein gegebenes Programm zu analysieren. Die Dissertation erweitert den Stand der Technik in dem Bereich der Verifikation relationaler Eigenschaften, indem sie einerseits neue Ansätze zur Verfügung stellt und andererseits bereits existierende Ansätze miteinander kombiniert. Die Dissertation enthält jeweils einen Teil für die behandelten zwei relationalen Eigenschaften. Nichtinterferenz.\textbf{Nichtinterferenz.} Das Framework zur Überprüfung der Nichtinterferenz stellt neue Ansätze für die automatische Testgenerierung und für das Debuggen des Programms zur Verfügung und kombiniert diese mit Ansätzen, die auf deduktiver Verifikation und Programmabhängigkeitsgraphen basieren. Der erste neue Ansatz ermöglicht die automatische Generierung von Nichtinterferenz-Tests. Er ermöglicht dem Nutzer, nach Verletzungen der Nichtinterferenz-Eigenschaft im Programm zu suchen und stellt zudem ein für relationale Eigenschaften passendes Abdeckungskriterium für die generierten Test-Suites zur Verfügung. Der zweite neue Ansatz ist ein relationaler Debugger zur Analyse von Nichtinterferenz-Gegenbeispielen. Er verwendet bekannte Konzepte des Programm-Debuggens und erweitert diese für die Analyse relationaler Eigenschaften. Um den Nutzer beim Beweisen der Nichtinterferenz-Eigenschaft zu unterstützen, kombiniert das Framework einen auf Programmabhängigkeitsgraphen basierenden Ansatz mit einem auf Logik basierenden Ansatz, der einen Theorembeweiser verwendet. Auf Programmabhängigkeitsgraphen basierende Ansätze berechnen die Abhängigkeiten zwischen den unterschiedlichen Programmteilen und überprüfen, ob die öffentliche Ausgabe von der geheimen Eingabe abhängt. Im Vergleich zu logik-basierten Ansätzen skalieren programmabhängigkeitsgraphen-basierte Ansätze besser. Allerdings, können sie Fehlalarme melden, da sie die Programmabhängigkeiten überapproximieren. Somit bestehen zwei weitere Beiträge des Frameworks in Kombinationen von programmabhängigkeitsgraphen- und logik basierten Ansätzen: (1) der programmabhängigkeitsgraphen basierte Ansatz vereinfacht das Programm, das danach vom logik basierten Ansatz überprüft wird und (2) der logik basierte Ansatz beweist, dass einige vom Programmabhängigkeitsgraphen-basierten Ansatz berechnete Abhängigkeiten Überapproximationen sind und aus der Analyse entfernt werden können. Programm-Slicing.\textbf{Programm-Slicing.} Der zweite Teil der Dissertation behandelt ein Framework für das automatische Programm-Slicing. Während die meisten zum Stand der Technik gehörenden Slicing-Ansätze nur eine syntaktische Programmanalyse durchführen, betrachtet dieses Framework auch die Programmsemantik und kann dadurch mehr Programmbefehle entfernen. Der erste Beitrag des Frameworks besteht aus einem Ansatz zur relationalen Verifikation, der erweitert wurde, um die Korrektheit eines Programm-Slice nachzuweisen, d.h. dass es das spezifizierte Verhalten des Originalprogramms bewahrt. Der Vorteil der Benutzung relationaler Verifikation ist, dass sie auf zwei ähnlichen Programmen automatisch läuft -- was bei einem Slice-Kandidaten und Originalprogramm der Fall ist. Somit, anders als bei den wenigen zum Stand der Technik gehörenden Ansätzen, die die Programmsemantik betrachten, ist dieser Ansatz automatisch. Der zweite Beitrag des Frameworks besteht aus einer neuen Strategie zur Generierung von Slice-Kandidaten durch durch die Verfeinerung von dynamischen Slices (für eine Eingabe gültigen Slices) mithilfe von der relationalen Verifikation gelieferte Gegenbeispiele

    Abstract Execution: Automatically Proving Infinitely Many Programs

    Get PDF
    Abstract programs contain schematic placeholders representing potentially infinitely many concrete programs. They naturally occur in multiple areas of computer science concerned with correctness: rule-based compilation and optimization, code refactoring and other source-to-source transformations, program synthesis, Correctness-by-Construction, and more. Mechanized correctness arguments about abstract programs are frequently conducted in interactive environments. While this permits expressing arbitrary properties quantifying over programs, substantial effort has to be invested to prove them manually by writing proof scripts. Existing approaches to proving abstract program properties automatically, on the other hand, lack expressiveness. Frequently, they only support placeholders representing all possible instantiations; in some cases, minor refinements are supported. This thesis bridges that gap by presenting Abstract Execution (AE), an automatic reasoning technique for universal behavioral properties of abstract programs. The restriction to universal (no existential quantification) and behavioral (not addressing internal structure) properties excludes certain applications; however, it is the key to automation. Our logic for Abstract Execution uses abstract state changes to represent unknown effects on local variables and the heap, and models abrupt completion by symbolic branching. In this logic, schematic placeholders have names: It is possible to re-use them at several places, representing the same program elements in potentially different contexts. Furthermore, the represented concrete programs can be constrained by an expressive specification language, which is a unique feature of AE. We use the theory of dynamic frames to scale between full abstraction and total precision of frame specifications, and support fine-grained pre- and postconditions for (abrupt) completion. We implemented AE by extending the program verifier KeY. Specifically for relational verification of abstract Java programs, we developed REFINITY, a graphical KeY frontend. We used REFINITY it in our signature application of AE: to model well-known statement-level refactoring techniques and prove their conditional safety. Several yet undocumented behavioral preconditions for safe refactorings originated in this case study, which is one of very few attempts to statically prove behavioral correctness of statement-level refactorings, and the only one to cover them to that extent. AE extends Symbolic Execution (SE) for abstract programs. As a foundational contribution, we propose a general framework for SE based on the semantics of symbolic states. It natively integrates state merging by supporting m-to-n transitions. We define two orthogonal correctness notions, exhaustiveness and precision, and formally prove their relation to program proving and bug detection. Finally, we introduce Modal Trace Logic (MTL), a trace-based logic to represent a variety of different program verification tasks, especially for relational verification. It is a “plug-in” logic which can be integrated on-demand with formal languages that have a trace semantics. The core of MTL is the trace modality, which allows expressing that a specification approximates an implementation after a trace abstraction step. We demonstrate the versatility of this approach by formalizing concrete verification tasks in MTL, ranging from functional verification over program synthesis to program evolution. To reason about MTL problems, we translate them to symbolic traces. We suggest Symbolic Trace Logic (STL), which comes with a sequent calculus to prove symbolic trace inclusions. This requires checking symbolic states for subsumption; to that end, we provide two generally useful notions of symbolic state subsumption. This framework relates as follows to the other parts of this thesis: We use the language of abstract programs to express synthesis and compilation, which connects MTL to AE. Moreover, symbolic states of STL are based on our framework for SE
    corecore