13,032 research outputs found

    PubMed and beyond: a survey of web tools for searching biomedical literature

    Get PDF
    The past decade has witnessed the modern advances of high-throughput technology and rapid growth of research capacity in producing large-scale biological data, both of which were concomitant with an exponential growth of biomedical literature. This wealth of scholarly knowledge is of significant importance for researchers in making scientific discoveries and healthcare professionals in managing health-related matters. However, the acquisition of such information is becoming increasingly difficult due to its large volume and rapid growth. In response, the National Center for Biotechnology Information (NCBI) is continuously making changes to its PubMed Web service for improvement. Meanwhile, different entities have devoted themselves to developing Web tools for helping users quickly and efficiently search and retrieve relevant publications. These practices, together with maturity in the field of text mining, have led to an increase in the number and quality of various Web tools that provide comparable literature search service to PubMed. In this study, we review 28 such tools, highlight their respective innovations, compare them to the PubMed system and one another, and discuss directions for future development. Furthermore, we have built a website dedicated to tracking existing systems and future advances in the field of biomedical literature search. Taken together, our work serves information seekers in choosing tools for their needs and service providers and developers in keeping current in the field

    Analysis reuse exploiting taxonomical information and belief assignment in industrial problem solving

    Get PDF
    To take into account the experience feedback on solving complex problems in business is deemed as a way to improve the quality of products and processes. Only a few academic works, however, are concerned with the representation and the instrumentation of experience feedback systems. We propose, in this paper, a model of experiences and mechanisms to use these experiences. More specifically, we wish to encourage the reuse of already performed expert analysis to propose a priori analysis in the solving of a new problem. The proposal is based on a representation in the context of the experience of using a conceptual marker and an explicit representation of the analysis incorporating expert opinions and the fusion of these opinions. The experience feedback models and inference mechanisms are integrated in a commercial support tool for problem solving methodologies. The results obtained to this point have already led to the definition of the role of ‘‘Rex Manager’’ with principles of sustainable management for continuous improvement of industrial processes in companies

    A Relevance Feedback-Based System For Quickly Narrowing Biomedical Literature Search Result

    Get PDF
    The online literature is an important source that helps people find the information. The quick increase of online literature makes the manual search process for the most relevant information a very time-consuming task and leads to sifting through many results to find the relevant ones. The existing search engines and online databases return a list of results that satisfy the user\u27s search criteria. The list is often too long for the user to go through every hit if he/she does not exactly know what he/she wants or/and does not have time to review them one by one. My focus is on how to find biomedical literature in a fastest way. In this dissertation, I developed a biomedical literature search system that uses relevance feedback mechanism, fuzzy logic, text mining techniques and Unified Medical Language System. The system extracts and decodes information from the online biomedical documents and uses the extracted information to first filter unwanted documents and then ranks the related ones based on the user preferences. I used text mining techniques to extract PDF document features and used these features to filter unwanted documents with the help of fuzzy logic. The system extracts meaning and semantic relations between texts and calculates the similarity between documents using these relations. Moreover, I developed a fuzzy literature ranking method that uses fuzzy logic, text mining techniques and Unified Medical Language System. The ranking process is utilized based on fuzzy logic and Unified Medical Language System knowledge resources. The fuzzy ranking method uses semantic type and meaning concepts to map the relations between texts in documents. The relevance feedback-based biomedical literature search system is evaluated using a real biomedical data that created using dobutamine (drug name). The data set contains 1,099 original documents. To obtain coherent and reliable evaluation results, two physicians are involved in the system evaluation. Using (30-day mortality) as specific query, the retrieved result precision improves by 87.7% in three rounds, which shows the effectiveness of using relevance feedback, fuzzy logic and UMLS in the search process. Moreover, the fuzzy-based ranking method is evaluated in term of ranking the biomedical search result. Experiments show that the fuzzy-based ranking method improves the average ranking order accuracy by 3.35% and 29.55% as compared with UMLS meaning and semantic type methods respectively

    HAGR: the Human Ageing Genomic Resources

    Get PDF
    The Human Ageing Genomic Resources (HAGR) is a collection of online resources for studying the biology of human ageing. HAGR features two main databases: GenAge and AnAge. GenAge is a curated database of genes related to human ageing. Entries were primarily selected based on genetic perturbations in animal models and human diseases as well as an extensive literature review. Each entry includes a variety of automated and manually curated information, including, where available, protein–protein interactions, the relevant literature, and a description of the gene and how it relates to human ageing. The goal of GenAge is to provide the most complete and comprehensive database of genes related to human ageing on the Internet as well as render an overview of the genetics of human ageing. AnAge is an integrative database describing the ageing process in several organisms and featuring, if available, maximum life span, taxonomy, developmental schedules and metabolic rate, making AnAge a unique resource for the comparative biology of ageing. Associated with the databases are data-mining tools and software designed to investigate the role of genes and proteins in the human ageing process as well as analyse ageing across different taxa. HAGR is freely available to the academic community at http://genomics.senescence.info

    PLAN2L: a web tool for integrated text mining and literature-based bioentity relation extraction

    Get PDF
    There is an increasing interest in using literature mining techniques to complement information extracted from annotation databases or generated by bioinformatics applications. Here we present PLAN2L, a web-based online search system that integrates text mining and information extraction techniques to access systematically information useful for analyzing genetic, cellular and molecular aspects of the plant model organism Arabidopsis thaliana. Our system facilitates a more efficient retrieval of information relevant to heterogeneous biological topics, from implications in biological relationships at the level of protein interactions and gene regulation, to sub-cellular locations of gene products and associations to cellular and developmental processes, i.e. cell cycle, flowering, root, leaf and seed development. Beyond single entities, also predefined pairs of entities can be provided as queries for which literature-derived relations together with textual evidences are returned. PLAN2L does not require registration and is freely accessible at http://zope.bioinfo.cnio.es/plan2l

    Exploiting semantics for improving clinical information retrieval

    Get PDF
    Clinical information retrieval (IR) presents several challenges including terminology mismatch and granularity mismatch. One of the main objectives in clinical IR is to fill the semantic gap among the queries and documents and going beyond keywords matching. To address these issues, in this study we attempt to use semantic information to improve the performance of clinical IR systems by representing queries in an expressive and meaningful context. In this study we propose query context modeling to improve the effectiveness of clinical IR systems. To model query contexts we propose two novel approaches to modeling medical query contexts. The first approach concerns modeling medical query contexts based on mining semantic-based AR for improving clinical text retrieval. The query context is derived from the rules that cover the query and then weighted according to their semantic relatedness to the query concepts. In our second approach we model a representative query context by developing query domain ontology. To develop query domain ontology we extract all the concepts that have semantic relationship with the query concept(s) in UMLS ontologies. Query context represents concepts extracted from query domain ontology and weighted according to their semantic relatedness to the query concept(s). The query context is then exploited in the patient records query expansion and re-ranking for improving clinical retrieval performance. We evaluate this approach on the TREC Medical Records dataset. Results show that our proposed approach significantly improves the retrieval performance compare to classic keyword-based IR model

    The Requirements for Ontologies in Medical Data Integration: A Case Study

    Full text link
    Evidence-based medicine is critically dependent on three sources of information: a medical knowledge base, the patients medical record and knowledge of available resources, including where appropriate, clinical protocols. Patient data is often scattered in a variety of databases and may, in a distributed model, be held across several disparate repositories. Consequently addressing the needs of an evidence-based medicine community presents issues of biomedical data integration, clinical interpretation and knowledge management. This paper outlines how the Health-e-Child project has approached the challenge of requirements specification for (bio-) medical data integration, from the level of cellular data, through disease to that of patient and population. The approach is illuminated through the requirements elicitation and analysis of Juvenile Idiopathic Arthritis (JIA), one of three diseases being studied in the EC-funded Health-e-Child project.Comment: 6 pages, 1 figure. Presented at the 11th International Database Engineering & Applications Symposium (Ideas2007). Banff, Canada September 200
    corecore