349,971 research outputs found

    IMPLEMENTATION AND UNIFORM MANAGEMENT OF MODELLING ENTITIES IN A MASSIVELY FEATURE-OBJECT ORIENTED ADVANCED CAD ENVIRONMENT

    Get PDF
    Today we are spectators of the transition process in computer aided design from traditional geometry based on design systems to advanced computer-based engineering systems. The key is the feature technology that allows both integrating and managing modelling entities in a coherent way. Feature technology is developing rapidly. New research topics and contexts are emerging from time to time. This paper introduces concept, design and technological feature-objects to support operational, structural and morphological modelling of mechanical products. First, the feature-centred approaches to conceptual design are summarized and evaluated. Then an implementation of concept feature-objects and the methodology for using them is presented. The strength of concept feature-objects is in their morphology inclusive nature. They appear as parametrized three-dimensional skeletons providing geometrical representations for the modelled engineering conceptions. A concept feature-object models the physical ports, contact surfaces related to ports, bones between ports, DOF of ports, relevant physical parameters, scientific and empirical descriptions of intentional transformations and environmental effects. Concept feature-objects are related to design feature-objects that, in turn, are constructed of a relevant set of technological feature-entities. Concept feature-objects refer to the configurable and parametrized design feature-objects through an indexing mechanism. The conceptions have been tested during the programming and further development of the authors' PRODES system

    Integrating the common variability language with multilanguage annotations for web engineering

    Get PDF
    Web applications development involves managing a high diversity of files and resources like code, pages or style sheets, implemented in different languages. To deal with the automatic generation of custom-made configurations of web applications, industry usually adopts annotation-based approaches even though the majority of studies encourage the use of composition-based approaches to implement Software Product Lines. Recent work tries to combine both approaches to get the complementary benefits. However, technological companies are reticent to adopt new development paradigms such as feature-oriented programming or aspect-oriented programming. Moreover, it is extremely difficult, or even impossible, to apply these programming models to web applications, mainly because of their multilingual nature, since their development involves multiple types of source code (Java, Groovy, JavaScript), templates (HTML, Markdown, XML), style sheet files (CSS and its variants, such as SCSS), and other files (JSON, YML, shell scripts). We propose to use the Common Variability Language as a composition-based approach and integrate annotations to manage fine grained variability of a Software Product Line for web applications. In this paper, we (i) show that existing composition and annotation-based approaches, including some well-known combinations, are not appropriate to model and implement the variability of web applications; and (ii) present a combined approach that effectively integrates annotations into a composition-based approach for web applications. We implement our approach and show its applicability with an industrial real-world system.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    State-of-the-art methods for exposure-health studies: Results from the exposome data challenge event

    Get PDF
    The exposome recognizes that individuals are exposed simultaneously to a multitude of different environmental factors and takes a holistic approach to the discovery of etiological factors for disease. However, challenges arise when trying to quantify the health effects of complex exposure mixtures. Analytical challenges include dealing with high dimensionality, studying the combined effects of these exposures and their interactions, integrating causal pathways, and integrating high-throughput omics layers. To tackle these challenges, the Barcelona Institute for Global Health (ISGlobal) held a data challenge event open to researchers from all over the world and from all expertises. Analysts had a chance to compete and apply state-of-the-art methods on a common partially simulated exposome dataset (based on real case data from the HELIX project) with multiple correlated exposure variables (P > 100 exposure variables) arising from general and personal environments at different time points, biological molecular data (multi-omics: DNA methylation, gene expression, proteins, metabolomics) and multiple clinical phenotypes in 1301 mother–child pairs. Most of the methods presented included feature selection or feature reduction to deal with the high dimensionality of the exposome dataset. Several approaches explicitly searched for combined effects of exposures and/or their interactions using linear index models or response surface methods, including Bayesian methods. Other methods dealt with the multi-omics dataset in mediation analyses using multiple-step approaches. Here we discuss features of the statistical models used and provide the data and codes used, so that analysts have examples of implementation and can learn how to use these methods. Overall, the exposome data challenge presented a unique opportunity for researchers from different disciplines to create and share state-of-the-art analytical methods, setting a new standard for open science in the exposome and environmental health field

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    A taxonomy of approaches for integrating attack awareness in applications

    Get PDF
    Software applications are subject to an increasing number of attacks, resulting in data breaches and financial damage. Many solutions have been considered to help mitigate these attacks, such as the integration of attack-awareness techniques. In this paper, we propose a taxonomy illustrating how existing attack awareness techniques can be integrated into applications. This work provides a guide for security researchers and developers, aiding them when choosing the approach which best fits the needs of their application

    An ontology of agile aspect oriented software development

    Get PDF
    Both agile methods and aspect oriented programming (AOP) have emerged in recent years as new paradigms in software development. Both promise to free the process of building software systems from some of the constraints of more traditional approaches. As a software engineering approach on the one hand, and a software development tool on the other, there is the potential for them to be used in conjunction. However, thus far, there has been little interplay between the two. Nevertheless, there is some evidence that there may be untapped synergies that may be exploited, if the appropriate approach is taken to integrating AOP with agile methods. This paper takes an ontological approach to supporting this integration, proposing ontology enabled development based on an analysis of existing ontologies of aspect oriented programming, a proposed ontology of agile methods, and a derived ontology of agile aspect oriented development
    corecore