158 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Advances in Cybercrime Prediction: A Survey of Machine, Deep, Transfer, and Adaptive Learning Techniques

    Full text link
    Cybercrime is a growing threat to organizations and individuals worldwide, with criminals using increasingly sophisticated techniques to breach security systems and steal sensitive data. In recent years, machine learning, deep learning, and transfer learning techniques have emerged as promising tools for predicting cybercrime and preventing it before it occurs. This paper aims to provide a comprehensive survey of the latest advancements in cybercrime prediction using above mentioned techniques, highlighting the latest research related to each approach. For this purpose, we reviewed more than 150 research articles and discussed around 50 most recent and relevant research articles. We start the review by discussing some common methods used by cyber criminals and then focus on the latest machine learning techniques and deep learning techniques, such as recurrent and convolutional neural networks, which were effective in detecting anomalous behavior and identifying potential threats. We also discuss transfer learning, which allows models trained on one dataset to be adapted for use on another dataset, and then focus on active and reinforcement Learning as part of early-stage algorithmic research in cybercrime prediction. Finally, we discuss critical innovations, research gaps, and future research opportunities in Cybercrime prediction. Overall, this paper presents a holistic view of cutting-edge developments in cybercrime prediction, shedding light on the strengths and limitations of each method and equipping researchers and practitioners with essential insights, publicly available datasets, and resources necessary to develop efficient cybercrime prediction systems.Comment: 27 Pages, 6 Figures, 4 Table

    Explainable Artificial Intelligence Applications in Cyber Security: State-of-the-Art in Research

    Get PDF
    This survey presents a comprehensive review of current literature on Explainable Artificial Intelligence (XAI) methods for cyber security applications. Due to the rapid development of Internet-connected systems and Artificial Intelligence in recent years, Artificial Intelligence including Machine Learning and Deep Learning has been widely utilized in the fields of cyber security including intrusion detection, malware detection, and spam filtering. However, although Artificial Intelligence-based approaches for the detection and defense of cyber attacks and threats are more advanced and efficient compared to the conventional signature-based and rule-based cyber security strategies, most Machine Learning-based techniques and Deep Learning-based techniques are deployed in the “black-box” manner, meaning that security experts and customers are unable to explain how such procedures reach particular conclusions. The deficiencies of transparencies and interpretability of existing Artificial Intelligence techniques would decrease human users’ confidence in the models utilized for the defense against cyber attacks, especially in current situations where cyber attacks become increasingly diverse and complicated. Therefore, it is essential to apply XAI in the establishment of cyber security models to create more explainable models while maintaining high accuracy and allowing human users to comprehend, trust, and manage the next generation of cyber defense mechanisms. Although there are papers reviewing Artificial Intelligence applications in cyber security areas and the vast literature on applying XAI in many fields including healthcare, financial services, and criminal justice, the surprising fact is that there are currently no survey research articles that concentrate on XAI applications in cyber security. Therefore, the motivation behind the survey is to bridge the research gap by presenting a detailed and up-to-date survey of XAI approaches applicable to issues in the cyber security field. Our work is the first to propose a clear roadmap for navigating the XAI literature in the context of applications in cyber security

    Data Mining

    Get PDF
    The availability of big data due to computerization and automation has generated an urgent need for new techniques to analyze and convert big data into useful information and knowledge. Data mining is a promising and leading-edge technology for mining large volumes of data, looking for hidden information, and aiding knowledge discovery. It can be used for characterization, classification, discrimination, anomaly detection, association, clustering, trend or evolution prediction, and much more in fields such as science, medicine, economics, engineering, computers, and even business analytics. This book presents basic concepts, ideas, and research in data mining

    Cyber Law and Espionage Law as Communicating Vessels

    Get PDF
    Professor Lubin\u27s contribution is Cyber Law and Espionage Law as Communicating Vessels, pp. 203-225. Existing legal literature would have us assume that espionage operations and “below-the-threshold” cyber operations are doctrinally distinct. Whereas one is subject to the scant, amorphous, and under-developed legal framework of espionage law, the other is subject to an emerging, ever-evolving body of legal rules, known cumulatively as cyber law. This dichotomy, however, is erroneous and misleading. In practice, espionage and cyber law function as communicating vessels, and so are better conceived as two elements of a complex system, Information Warfare (IW). This paper therefore first draws attention to the similarities between the practices – the fact that the actors, technologies, and targets are interchangeable, as are the knee-jerk legal reactions of the international community. In light of the convergence between peacetime Low-Intensity Cyber Operations (LICOs) and peacetime Espionage Operations (EOs) the two should be subjected to a single regulatory framework, one which recognizes the role intelligence plays in our public world order and which adopts a contextual and consequential method of inquiry. The paper proceeds in the following order: Part 2 provides a descriptive account of the unique symbiotic relationship between espionage and cyber law, and further explains the reasons for this dynamic. Part 3 places the discussion surrounding this relationship within the broader discourse on IW, making the claim that the convergence between EOs and LICOs, as described in Part 2, could further be explained by an even larger convergence across all the various elements of the informational environment. Parts 2 and 3 then serve as the backdrop for Part 4, which details the attempt of the drafters of the Tallinn Manual 2.0 to compartmentalize espionage law and cyber law, and the deficits of their approach. The paper concludes by proposing an alternative holistic understanding of espionage law, grounded in general principles of law, which is more practically transferable to the cyber realmhttps://www.repository.law.indiana.edu/facbooks/1220/thumbnail.jp

    Machine Learning-Enabled IoT Security: Open Issues and Challenges Under Advanced Persistent Threats

    Full text link
    Despite its technological benefits, Internet of Things (IoT) has cyber weaknesses due to the vulnerabilities in the wireless medium. Machine learning (ML)-based methods are widely used against cyber threats in IoT networks with promising performance. Advanced persistent threat (APT) is prominent for cybercriminals to compromise networks, and it is crucial to long-term and harmful characteristics. However, it is difficult to apply ML-based approaches to identify APT attacks to obtain a promising detection performance due to an extremely small percentage among normal traffic. There are limited surveys to fully investigate APT attacks in IoT networks due to the lack of public datasets with all types of APT attacks. It is worth to bridge the state-of-the-art in network attack detection with APT attack detection in a comprehensive review article. This survey article reviews the security challenges in IoT networks and presents the well-known attacks, APT attacks, and threat models in IoT systems. Meanwhile, signature-based, anomaly-based, and hybrid intrusion detection systems are summarized for IoT networks. The article highlights statistical insights regarding frequently applied ML-based methods against network intrusion alongside the number of attacks types detected. Finally, open issues and challenges for common network intrusion and APT attacks are presented for future research.Comment: ACM Computing Surveys, 2022, 35 pages, 10 Figures, 8 Table

    A survey on the development status and application prospects of knowledge graph in smart grids

    Full text link
    With the advent of the electric power big data era, semantic interoperability and interconnection of power data have received extensive attention. Knowledge graph technology is a new method describing the complex relationships between concepts and entities in the objective world, which is widely concerned because of its robust knowledge inference ability. Especially with the proliferation of measurement devices and exponential growth of electric power data empowers, electric power knowledge graph provides new opportunities to solve the contradictions between the massive power resources and the continuously increasing demands for intelligent applications. In an attempt to fulfil the potential of knowledge graph and deal with the various challenges faced, as well as to obtain insights to achieve business applications of smart grids, this work first presents a holistic study of knowledge-driven intelligent application integration. Specifically, a detailed overview of electric power knowledge mining is provided. Then, the overview of the knowledge graph in smart grids is introduced. Moreover, the architecture of the big knowledge graph platform for smart grids and critical technologies are described. Furthermore, this paper comprehensively elaborates on the application prospects leveraged by knowledge graph oriented to smart grids, power consumer service, decision-making in dispatching, and operation and maintenance of power equipment. Finally, issues and challenges are summarised.Comment: IET Generation, Transmission & Distributio

    Cryptographic ransomware encryption detection: Survey

    Get PDF
    The ransomware threat has loomed over our digital life since 1989. Criminals use this type of cyber attack to lock or encrypt victims' data, often coercing them to pay exorbitant amounts in ransom. The damage ransomware causes ranges from monetary losses paid for ransom at best to endangering human lives. Cryptographic ransomware, where attackers encrypt the victim's data, stands as the predominant ransomware variant. The primary characteristics of these attacks have remained the same since the first ransomware attack. For this reason, we consider this a key factor differentiating ransomware from other cyber attacks, making it vital in tackling the threat of cryptographic ransomware. This paper proposes a cyber kill chain that describes the modern crypto-ransomware attack. The survey focuses on the Encryption phase as described in our proposed cyber kill chain and its detection techniques. We identify three main methods used in detecting encryption-related activities by ransomware, namely API and System calls, I/O monitoring, and file system activities monitoring. Machine learning (ML) is a tool used in all three identified methodologies, and some of the issues within the ML domain related to this survey are also covered as part of their respective methodologies. The survey of selected proposals is conducted through the prism of those three methodologies, showcasing the importance of detecting ransomware during pre-encryption and encryption activities and the windows of opportunity to do so. We also examine commercial crypto-ransomware protection and detection offerings and show the gap between academic research and commercial applications

    Cybersecurity of Digital Service Chains

    Get PDF
    This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems
    corecore