10 research outputs found

    Integrating Visual Mnemonics and Input Feedback with Passphrases to Improve the Usability and Security of Digital Authentication

    Get PDF
    The need for both usable and secure authentication is more pronounced than ever before. Security researchers and professionals will need to have a deep understanding of human factors to address these issues. Due to their ubiquity, recoverability, and low barrier of entry, passwords remain the most common means of digital authentication. However, fundamental human nature dictates that it is exceedingly difficult for people to generate secure passwords on their own. System-generated random passwords can be secure but are often unusable, which is why most passwords are still created by humans. We developed a simple system for automatically generating mnemonic phrases and supporting mnemonic images for randomly generated passwords. We found that study participants remembered their passwords significantly better using our system than with existing systems. To combat shoulder surfing - looking at a user\u27s screen or keyboard as he or she enters sensitive input such as passwords - we developed an input masking technique that was demonstrated to minimize the threat of shoulder surfing attacks while improving the usability of password entry over existing methods. We extended this previous work to support longer passphrases with increased security and evaluated the effectiveness of our new system against traditional passphrases. We found that our system exhibited greater memorability, increased usability and overall rankings, and maintained or improved upon the security of the traditional passphrase systems. Adopting our passphrase system will lead to more usable and secure digital authentication

    Usable Security. A Systematic Literature Review

    Get PDF
    Usable security involves designing security measures that accommodate users’ needs and behaviors. Balancing usability and security poses challenges: the more secure the systems, the less usable they will be. On the contrary, more usable systems will be less secure. Numerous studies have addressed this balance. These studies, spanning psychology and computer science/engineering, contribute diverse perspectives, necessitating a systematic review to understand strategies and findings in this area. This systematic literature review examined articles on usable security from 2005 to 2022. A total of 55 research studies were selected after evaluation. The studies have been broadly categorized into four main clusters, each addressing different aspects: (1) usability of authentication methods, (2) helping security developers improve usability, (3) design strategies for influencing user security behavior, and (4) formal models for usable security evaluation. Based on this review, we report that the field’s current state reveals a certain immaturity, with studies tending toward system comparisons rather than establishing robust design guidelines based on a thorough analysis of user behavior. A common theoretical and methodological background is one of the main areas for improvement in this area of research. Moreover, the absence of requirements for Usable security in almost all development contexts greatly discourages implementing good practices since the earlier stages of development

    A model for secure and usable passphrases for multilingual users

    Get PDF
    Research on more than 100 million passwords that have been leaked to the public domain has uncovered various security limitations associated with user-generated short passwords. Long passwords (passphrases) are considered an alternative solution that could provide a balance between security and usability. However, the literature shows a lack of consistency in the security and usability contributions of passphrases. For example, studies that investigated passphrase security focusing on structural dependencies at character level found passphrases to be secure. Inversely, other research findings suggest that passphrase security could be compromised by the use of predictable grammatical rules, popular words in a natural language and keyboard patterns. This is further exacerbated by research on passphrases that is focused on the Global North. This is a huge concern given that results from inter-cultural studies suggest that local languages do influence password structure and to some extent, password usability and security. To address these gaps in the literature, this study used socio-technical theory which emphasised both the social and technical aspects of the phenomenon under study. Psychological studies show that the memory has limited capacity, something that threatens password usability; hence, the need to utilise information that is already known during password generation. Socio-cultural theory suggests that the information that is already known by users is contextually informed, hence sociocultural theory was applied to understand the contextual factors that could be used to enhance passphrase security and usability. With reference to the Southern African context, this study argues that system designers should take advantage of a multilingual user group and encourage the generation of passphrases that are based on substrings from different languages. This study went on to promote the use of multilingual passphrases instead of emphasising multi-character class passwords. This study was guided by design science research. Participants were invited to take part in a short password and multilingual passphrase generation and recall experiment that was made available using a web-based application. These passwords were generated by participants under pre-specified conditions. Quantitative and qualitative data was gathered. The study findings showed the use of both African and Indo-European languages in multilingual passphrases and short passwords. English oriented passwords and substrings dominated the multilingual passphrase and short password corpora. In addition, some of the short passwords and substrings in the multilingual passphrase corpora were found among the most common passwords of 2016, 2017 and 2018. Usability tests showed that multilingual passphrases are usable, even though they were not easy to create and recall when compared to short passwords. A high rate of password reuse during short password generation by participants might have worked in favour of short passwords. Nonetheless, participants appear to reflect better usability with multilingual passphrases over time due to repeated use. Females struggled to recall short passwords and multilingual passphrases when compared to their male counterparts. Security tests using the Probabilistic Context-Free Grammar suggest that short passwords are weaker, with just more than 50% of the short passwords being guessed, while none 4 Final Submission of Thesis, Dissertation or Research Report/Project, Conference or Exam Paper of the multilingual passphrases were guessed. Further analysis showed that short passwords that were oriented towards an IndoEuropean language were more easily guessed than African language-oriented short passwords. As such, this study encourages orienting passwords towards African languages while the use of multilingual passphrases is expected to offer more security. The use of African languages and multilingual passphrases by a user group that is biased towards English-oriented passwords could enhance security by increasing the search space

    Human Factors in the Cybersecurity of Autonomous Vehicles: Trends in Current Research

    Get PDF
    The cybersecurity of autonomous vehicles (AVs) is an important emerging area of research in traffic safety. Because human failure is the most common reason for a successful cyberattack, human-factor researchers and psychologists might improve AV cybersecurity by researching how to decrease the probability of a successful attack. We review some areas of research connected to the human factor in cybersecurity and find many potential issues. Psychologists might research the characteristics of people prone to cybersecurity failure, the types of scenarios they fail in and the factors that influence this failure or over-trust of AV. Human behavior during a cyberattack might be researched, as well as how to educate people about cybersecurity. Multitasking has an effect on the ability to defend against a cyberattack and research is needed to set the appropriate policy. Human-resource researchers might investigate the skills required for personnel working in AV cybersecurity and how to detect potential defectors early. The psychological profile of cyber attackers should be investigated to be able to set policies to decrease their motivation. Finally, the decrease of driver’s driving skills as a result of using AV and its connection to cybersecurity skills is also worth of research

    Conservation of Limited Resources: Design Principles for Security and Usability on Mobile Devices

    Get PDF
    Mobile devices have evolved from an accessory to the primary computing device for an increasing portion of the general population. Not only is mobile the primary device, consumers on average have multiple Internet-connected devices. The trend towards mobile has resulted in a shift to “mobile-first” strategies for delivering information and services in business organizations, universities, and government agencies. Though principles for good security design exist, those principles were formulated based upon the traditional workstation configuration instead of the mobile platform. Security design needs to follow the shift to a “mobile-first” emphasis to ensure the usability of the security interface. The mobile platform has constraints on resources that can adversely impact the usability of security. This research sought to identify design principles for usable security for mobile devices that address the constraints of the mobile platform. Security and usability have been seen as mutually exclusive. To accurately identify design principles, the relationship between principles for good security design and usability design must be understood. The constraints for the mobile environment must also be identified, and then evaluated for their impact on the interaction of a consumer with a security interface. To understand how the application of the proposed mobile security design principles is perceived by users, an artifact was built to instantiate the principles. Through a series of guided interactions, the importance of proposed design principles was measured in a simulation, in human-computer interaction, and in user perception. The measures showed a resounding difference between the usability of the same security design delivered on mobile vs. workstation platform. It also reveals that acknowledging the constraints of an environment and compensating for the constraints yields mobile security that is both usable and secure. Finally, the hidden cost of security design choices that distract the user from the surrounding environment were examined from both the security perspective and public safety perspective

    A STUDY OF GRAPHICAL ALTERNATIVES FOR USER AUTHENTICATION

    Get PDF
    Merged with duplicate record 10026.1/1124 on 27.02.2017 by CS (TIS)Merged with duplicate record 10026.1/1124 Submitted by Collection Services ([email protected]) on 2012-08-07T10:49:43Z No. of bitstreams: 1 JALI MZ_2011.pdf: 7019966 bytes, checksum: e2aca7edf5e11df083ec430aedac512f (MD5) Approved for entry into archive by Collection Services([email protected]) on 2012-08-07T10:50:20Z (GMT) No. of bitstreams: 1 JALI MZ_2011.pdf: 7019966 bytes, checksum: e2aca7edf5e11df083ec430aedac512f (MD5) Made available in DSpace on 2012-08-07T10:50:20Z (GMT). No. of bitstreams: 1 JALI MZ_2011.pdf: 7019966 bytes, checksum: e2aca7edf5e11df083ec430aedac512f (MD5) Previous issue date: 2011Authenticating users by means of passwords is still the dominant form of authentication despite its recognised weaknesses. To solve this, authenticating users with images or pictures (i.e. graphical passwords) is proposed as one possible alternative as it is claimed that pictures are easy to remember, easy to use and has considerable security. Reviewing literature from the last twenty years found that few graphical password schemes have successfully been applied as the primary user authentication mechanism, with many studies reporting that their proposed scheme was better than their predecessors and they normally compared their scheme with the traditional password-based. In addition, opportunities for further research in areas such as image selection, image storage and retrieval, memorability (i.e. the user’s ability to remember passwords), predictability, applicability to multiple platforms, as well as users’ familiarity are still widely possible. Motivated by the above findings and hoping to reduce the aforementioned issues, this thesis reports upon a series of graphical password studies by comparing existing methods, developing a novel alternative scheme, and introducing guidance for users before they start selecting their password. Specifically, two studies comparing graphical password methods were conducted with the specific aims to evaluate users’ familiarity and perception towards graphical methods and to examine the performance of graphical methods in the web environment. To investigate the feasibility of combining two graphical methods, a novel graphical method known as EGAS (Enhanced Graphical Authentication System) was developed and tested in terms of its ease of use, ideal secret combination, ideal login strategies, effect of using smaller tolerances (i.e. areas where the click is still accepted) as well as users’ familiarity. In addition, graphical password guidelines (GPG) were introduced and deployed within the EGAS prototype, in order to evaluate their potential to assist users in creating appropriate password choices. From these studies, the thesis provides an alternative classification for graphical password methods by looking at the users’ tasks when authenticating into the system; namely click-based, choice-based, draw-based and hybrid. Findings from comparative studies revealed that although a number of participants stated that they were aware of the existence of graphical passwords, they actually had little understanding of the methods involved. Moreover, the methods of selecting a series of images (i.e. choice-based) and clicking on the image (i.e. click-based) are actually possible to be used for web-based authentication due to both of them reporting complementary results. With respect to EGAS, the studies have shown that combining two graphical methods is possible and does not introduce negative effects upon the resulting usability. User familiarity with the EGAS software prototype was also improved as they used the software for periods of time, with improvement shown in login time, accuracy and login failures. With the above findings, the research proposes that users’ familiarity is one of the key elements in deploying any graphical method, and appropriate HCI guidelines should be considered and employed during development of the scheme. Additionally, employing the guidelines within the graphical method and not treating them as a separate entity in user authentication is also recommended. Other than that, elements such as reducing predictability, testing with multiple usage scenarios and platforms, as well as flexibility with respect to tolerance should be the focus for future research

    Integrating a usable security protocol for user authentication into the requirements and design process

    Get PDF
    L'utilisabilité et la sécurité sont des éléments cruciaux dans le processus d'authentification des utilisateurs. L'un des défis majeurs auquel font face les organisations aujourd'hui est d'offrir des systèmes d'accès aux ressources logiques (par exemple, une application informatique) et physiques (par exemple, un bâtiment) qui soient à la fois sécurisées et utilisables. Afin d'atteindre ces objectifs, il faut d'abord mettre en œuvre les trois composantes indispensables que sont l'identification (c.-à-d., définir l'identité d'un utilisateur), l'authentification (c.-à-d., vérifier l'identité d'un utilisateur) et l'autorisation (c.-à-d., accorder des droits d'accès à un utilisateur). Plus particulièrement, la recherche en authentification de l'utilisateur est essentielle. Sans authentification, par exemple, des systèmes informatiques ne sont pas capables de vérifier si un utilisateur demandant l'accès à une ressource possède les droits de le faire. Bien que plusieurs travaux de recherche aient porté sur divers mécanismes de sécurité, très peu de recherches jusqu'à présent ont porté sur l'utilisabilité et la sécurité des méthodes d'authentification des utilisateurs. Pour cette raison, il nous paraît nécessaire de développer un protocole d'utilisabilité et de sécurité pour concevoir les méthodes d'authentification des utilisateurs. La thèse centrale de ce travail de recherche soutient qu'il y a un conflit intrinsèque entre la création de systèmes qui soient sécurisés et celle de systèmes qui soient facile d'utilisation. Cependant, l'utilisabilité et la sécurité peuvent être construites de manière synergique en utilisant des outils d'analyse et de conception qui incluent des principes d'utilisabilité et de sécurité dès l'étape d'Analyse et de Conception de la méthode d'authentification. Dans certaines situations il est possible d'améliorer simultanément l'utilisabilité et la sécurité en revisitant les décisions de conception prises dans le passé. Dans d'autres cas, il est plus avantageux d'aligner l'utilisabilité et la sécurité en changeant l'environnement régulateur dans lequel les ordinateurs opèrent. Pour cette raison, cette thèse a comme objectif principal non pas d'adresser l'utilisabilité et la sécurité postérieurement à la fabrication du produit final, mais de faire de la sécurité un résultat naturel de l'étape d'Analyse et de Conception du cycle de vie de la méthode d'authentification. \ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : authentification de l'utilisateur, utilisabilité, sécurité informatique, contrôle d'accès

    Clemson Commencement Program, August 2014

    Get PDF

    Clemson Commencement Program, May 2014

    Get PDF
    corecore