3,564 research outputs found

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Geo-tagging and privacy-preservation in mobile cloud computing

    Get PDF
    With the emerge of the cloud computing service and the explosive growth of the mobile devices and applications, mobile computing technologies and cloud computing technologies have been drawing significant attentions. Mobile cloud computing, with the synergy between the cloud and mobile technologies, has brought us new opportunities to develop novel and practical systems such as mobile multimedia systems and cloud systems that provide collaborative data-mining services for data from disparate owners (e.g., mobile users). However, it also creates new challenges, e.g., the algorithms deployed in the computationally weak mobile device require higher efficiency, and introduces new problems such as the privacy concern when the private data is shared in the cloud for collaborative data-mining. The main objectives of this dissertation are: 1. to develop practical systems based on the unique features of mobile devices (i.e., all-in-one computing platform and sensors) and the powerful computing capability of the cloud; 2. to propose solutions protecting the data privacy when the data from disparate owners are shared in the cloud for collaborative data-mining. We first propose a mobile geo-tagging system. It is a novel, accurate and efficient image and video based remote target localization and tracking system using the Android smartphone. To cope with the smartphones' computational limitation, we design light-weight image/video processing algorithms to achieve a good balance between estimation accuracy and computational complexity. Our system is first of its kind and we provide first hand real-world experimental results, which demonstrate that our system is feasible and practicable. To address the privacy concern when data from disparate owners are shared in the cloud for collaborative data-mining, we then propose a generic compressive sensing (CS) based secure multiparty computation (MPC) framework for privacy-preserving collaborative data-mining in which data mining is performed in the CS domain. We perform the CS transformation and reconstruction processes with MPC protocols. We modify the original orthogonal matching pursuit algorithm and develop new MPC protocols so that the CS reconstruction process can be implemented using MPC. Our analysis and experimental results show that our generic framework is capable of enabling privacy preserving collaborative data-mining. The proposed framework can be applied to many privacy preserving collaborative data-mining and signal processing applications in the cloud. We identify an application scenario that requires simultaneously performing secure watermark detection and privacy preserving multimedia data storage. We further propose a privacy preserving storage and secure watermark detection framework by adopting our generic framework to address such a requirement. In our secure watermark detection framework, the multimedia data and secret watermark pattern are presented to the cloud for secure watermark detection in a compressive sensing domain to protect the privacy. We also give mathematical and statistical analysis to derive the expected watermark detection performance in the compressive sensing domain, based on the target image, watermark pattern and the size of the compressive sensing matrix (but without the actual CS matrix), which means that the watermark detection performance in the CS domain can be estimated during the watermark embedding process. The correctness of the derived performance has been validated by our experiments. Our theoretical analysis and experimental results show that secure watermark detection in the compressive sensing domain is feasible. By taking advantage of our mobile geo-tagging system and compressive sensing based privacy preserving data-mining framework, we develop a mobile privacy preserving collaborative filtering system. In our system, mobile users can share their personal data with each other in the cloud and get daily activity recommendations based on the data-mining results generated by the cloud, without leaking the privacy and secrecy of the data to other parties. Experimental results demonstrate that the proposed system is effective in enabling efficient mobile privacy preserving collaborative filtering services.Includes bibliographical references (pages 126-133)

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Semantic Modeling of Analytic-based Relationships with Direct Qualification

    Full text link
    Successfully modeling state and analytics-based semantic relationships of documents enhances representation, importance, relevancy, provenience, and priority of the document. These attributes are the core elements that form the machine-based knowledge representation for documents. However, modeling document relationships that can change over time can be inelegant, limited, complex or overly burdensome for semantic technologies. In this paper, we present Direct Qualification (DQ), an approach for modeling any semantically referenced document, concept, or named graph with results from associated applied analytics. The proposed approach supplements the traditional subject-object relationships by providing a third leg to the relationship; the qualification of how and why the relationship exists. To illustrate, we show a prototype of an event-based system with a realistic use case for applying DQ to relevancy analytics of PageRank and Hyperlink-Induced Topic Search (HITS).Comment: Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015

    Developing a Digital Twin at Building and City Levels: A Case Study of West Cambridge Campus

    Get PDF
    A digital twin (DT) refers to a digital replica of physical assets, processes, and systems. DTs integrate artificial intelligence, machine learning, and data analytics to create living digital simulation models that are able to learn and update from multiple sources as well as represent and predict the current and future conditions of physical counterparts. However, current activities related to DTs are still at an early stage with respect to buildings and other infrastructure assets from an architectural and engineering/construction point of view. Less attention has been paid to the operation and maintenance (O&M) phase, which is the longest time span in the asset life cycle. A systematic and clear architecture verified with practical use cases for constructing a DT would be the foremost step for effective operation and maintenance of buildings and cities. According to current research about multitier architectures, this paper presents a system architecture for DTs that is specifically designed at both the building and city levels. Based on this architecture, a DT demonstrator of the West Cambridge site of the University of Cambridge in the UK was developed that integrates heterogeneous data sources, supports effective data querying and analysis, supports decision-making processes in O&M management, and further bridges the gap between human relationships with buildings/cities. This paper aims at going through the whole process of developing DTs in building and city levels from the technical perspective and sharing lessons learned and challenges involved in developing DTs in real practices. Through developing this DT demonstrator, the results provide a clear roadmap and present particular DT research efforts for asset management practitioners, policymakers, and researchers to promote the implementation and development of DT at the building and city levels

    The design and implementation of serious games for driving and mobility

    Get PDF
    The automotive and transportation sectors are showing consistent improvements in trends and standards concerning the safe and convenient travel of the road users. In this growing community of road users, the driver performance is a notable factor as many on-road mishaps emerge out of poor driver performance. In this research work, a case-study and experimental analysis were conducted to improve driver performance through the deployment of serious games. The primary motive of this work is to stimulate the on-road user performance through immediate feedback, driver coaching, and real-time gamification methods. The games exploit the cloud-based architecture to retrieve the driver performance scores based on real-time evaluation of vehicle signals and display the outcomes on game scene by reflecting the game parameters based on real-world user performance (in the context of driving and mobility). The deployment of games in cars is the topic of interest in current state-of-the-art, as there are more factors associated with it, such as safety, usability, and willingness of the users. These aspects were taken into careful consideration while designing the paradigm of gamification model. The user feedback for the real-time games was extracted through pilot tests and field tests in Genova. The gamification and driver coaching aspects were tested on various occasions (plug-in and field tests conducted at 5 European test sites), and the inputs from these field tests enabled to tune the parameters concerning the evaluation and gamification models. The improvement of user behavior was performed through a virtuous cycle with the integration of virtual sensors to the serious gaming framework. As the culmination, the usability tests for the real-time games were conducted with 18 test users to understand the user acceptance criteria and the parameters (ease of use and safety) that would contribute to the deployment of games. Other salient factors such as the impact of games, large-scale deployment, collaborative gaming and exploitation of gaming framework for 3rd party applications were also investigated in this research activity. The analysis of the usability tests states that the user acceptance of the implemented games is good. The report from usability study has addressed the user preferences in games such as duration, strategy and gameplay mechanism; these factors contribute a foundation for future research in implementing the games for mobility
    • 

    corecore