31,241 research outputs found

    Emerging cad and bim trends in the aec education: An analysis from students\u27 perspective

    Get PDF
    As the construction industry is moving towards collaborative design and construction practices globally, training the architecture, engineering, and construction (AEC) students professionally related to CAD and BIM became a necessity rather than an option. The advancement in the industry has led to collaborative modelling environments, such as building information modelling (BIM), as an alternative to computer-aided design (CAD) drafting. Educators have shown interest in integrating BIM into the AEC curriculum, where teaching CAD and BIM simultaneously became a challenge due to the differences of two systems. One of the major challenges was to find the appropriate teaching techniques, as educators were unaware of the AEC studentsā€™ learning path in CAD and BIM. In order to make sure students learn and benefit from both CAD and BIM, the learning path should be revealed from studentsā€™ perspective. This paper summarizes the background and differences of CAD and BIM education, and how the transition from CAD to BIM can be achieved for collaborative working practices. The analysis was performed on freshman and junior level courses to learn the perception of students about CAD and BIM education. A dual-track survey was used to collect responses from AEC students in four consecutive years. The results showed that students prefer BIM to CAD in terms of the friendliness of the user-interface, help functions, and self-detection of mistakes. The survey also revealed that most of the students believed in the need for a BIM specialty course with Construction Management (CM), Structure, and Mechanical-Electrical-Plumbing (MEP) areas. The benefits and challenges of both CAD and BIM-based software from studentsā€™ perspectives helps to improve the learning outcomes of CAD/BIM courses to better help students in their learning process, and works as a guideline for educators on how to design and teach CAD/BIM courses simultaneously by considering the learning process and perspectives of students. Ā© 2018 The autho

    Inviwo -- A Visualization System with Usage Abstraction Levels

    Full text link
    The complexity of today's visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities

    [Subject benchmark statement]: computing

    Get PDF

    A real-time proximity querying algorithm for haptic-based molecular docking

    Get PDF
    Intermolecular binding underlies every metabolic and regulatory processes of the cell, and the therapeutic and pharmacological properties of drugs. Molecular docking systems model and simulate these interactions in silico and allow us to study the binding process. Haptic-based docking provides an immersive virtual docking environment where the user can interact with and guide the molecules to their binding pose. Moreover, it allows human perception, intuition and knowledge to assist and accelerate the docking process, and reduces incorrect binding poses. Crucial for interactive docking is the real-time calculation of interaction forces. For smooth and accurate haptic exploration and manipulation, force-feedback cues have to be updated at a rate of 1 kHz. Hence, force calculations must be performed within 1ms. To achieve this, modern haptic-based docking approaches often utilize pre-computed force grids and linear interpolation. However, such grids are time-consuming to pre-compute (especially for large molecules), memory hungry, can induce rough force transitions at cell boundaries and cannot be applied to flexible docking. Here we propose an efficient proximity querying method for computing intermolecular forces in real time. Our motivation is the eventual development of a haptic-based docking solution that can model molecular flexibility. Uniquely in a haptics application we use octrees to decompose the 3D search space in order to identify the set of interacting atoms within a cut-off distance. Force calculations are then performed on this set in real time. The implementation constructs the trees dynamically, and computes the interaction forces of large molecular structures (i.e. consisting of thousands of atoms) within haptic refresh rates. We have implemented this method in an immersive, haptic-based, rigid-body, molecular docking application called Haptimol_RD. The user can use the haptic device to orientate the molecules in space, sense the interaction forces on the device, and guide the molecules to their binding pose. Haptimol_RD is designed to run on consumer level hardware, i.e. there is no need for specialized/proprietary hardware
    • ā€¦
    corecore