5,626 research outputs found

    Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification

    Full text link
    In this paper, we address the hyperspectral image (HSI) classification task with a generative adversarial network and conditional random field (GAN-CRF) -based framework, which integrates a semi-supervised deep learning and a probabilistic graphical model, and make three contributions. First, we design four types of convolutional and transposed convolutional layers that consider the characteristics of HSIs to help with extracting discriminative features from limited numbers of labeled HSI samples. Second, we construct semi-supervised GANs to alleviate the shortage of training samples by adding labels to them and implicitly reconstructing real HSI data distribution through adversarial training. Third, we build dense conditional random fields (CRFs) on top of the random variables that are initialized to the softmax predictions of the trained GANs and are conditioned on HSIs to refine classification maps. This semi-supervised framework leverages the merits of discriminative and generative models through a game-theoretical approach. Moreover, even though we used very small numbers of labeled training HSI samples from the two most challenging and extensively studied datasets, the experimental results demonstrated that spectral-spatial GAN-CRF (SS-GAN-CRF) models achieved top-ranking accuracy for semi-supervised HSI classification.Comment: Accepted by IEEE T-CY

    A Survey on Multi-View Clustering

    Full text link
    With advances in information acquisition technologies, multi-view data become ubiquitous. Multi-view learning has thus become more and more popular in machine learning and data mining fields. Multi-view unsupervised or semi-supervised learning, such as co-training, co-regularization has gained considerable attention. Although recently, multi-view clustering (MVC) methods have been developed rapidly, there has not been a survey to summarize and analyze the current progress. Therefore, this paper reviews the common strategies for combining multiple views of data and based on this summary we propose a novel taxonomy of the MVC approaches. We further discuss the relationships between MVC and multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated. To promote future development of MVC, we envision several open problems that may require further investigation and thorough examination.Comment: 17 pages, 4 figure

    Hybrid CNN and Dictionary-Based Models for Scene Recognition and Domain Adaptation

    Full text link
    Convolutional neural network (CNN) has achieved state-of-the-art performance in many different visual tasks. Learned from a large-scale training dataset, CNN features are much more discriminative and accurate than the hand-crafted features. Moreover, CNN features are also transferable among different domains. On the other hand, traditional dictionarybased features (such as BoW and SPM) contain much more local discriminative and structural information, which is implicitly embedded in the images. To further improve the performance, in this paper, we propose to combine CNN with dictionarybased models for scene recognition and visual domain adaptation. Specifically, based on the well-tuned CNN models (e.g., AlexNet and VGG Net), two dictionary-based representations are further constructed, namely mid-level local representation (MLR) and convolutional Fisher vector representation (CFV). In MLR, an efficient two-stage clustering method, i.e., weighted spatial and feature space spectral clustering on the parts of a single image followed by clustering all representative parts of all images, is used to generate a class-mixture or a classspecific part dictionary. After that, the part dictionary is used to operate with the multi-scale image inputs for generating midlevel representation. In CFV, a multi-scale and scale-proportional GMM training strategy is utilized to generate Fisher vectors based on the last convolutional layer of CNN. By integrating the complementary information of MLR, CFV and the CNN features of the fully connected layer, the state-of-the-art performance can be achieved on scene recognition and domain adaptation problems. An interested finding is that our proposed hybrid representation (from VGG net trained on ImageNet) is also complementary with GoogLeNet and/or VGG-11 (trained on Place205) greatly.Comment: Accepted by TCSVT on Sep.201

    Learning to Hash for Indexing Big Data - A Survey

    Full text link
    The explosive growth in big data has attracted much attention in designing efficient indexing and search methods recently. In many critical applications such as large-scale search and pattern matching, finding the nearest neighbors to a query is a fundamental research problem. However, the straightforward solution using exhaustive comparison is infeasible due to the prohibitive computational complexity and memory requirement. In response, Approximate Nearest Neighbor (ANN) search based on hashing techniques has become popular due to its promising performance in both efficiency and accuracy. Prior randomized hashing methods, e.g., Locality-Sensitive Hashing (LSH), explore data-independent hash functions with random projections or permutations. Although having elegant theoretic guarantees on the search quality in certain metric spaces, performance of randomized hashing has been shown insufficient in many real-world applications. As a remedy, new approaches incorporating data-driven learning methods in development of advanced hash functions have emerged. Such learning to hash methods exploit information such as data distributions or class labels when optimizing the hash codes or functions. Importantly, the learned hash codes are able to preserve the proximity of neighboring data in the original feature spaces in the hash code spaces. The goal of this paper is to provide readers with systematic understanding of insights, pros and cons of the emerging techniques. We provide a comprehensive survey of the learning to hash framework and representative techniques of various types, including unsupervised, semi-supervised, and supervised. In addition, we also summarize recent hashing approaches utilizing the deep learning models. Finally, we discuss the future direction and trends of research in this area

    Deep Transductive Semi-supervised Maximum Margin Clustering

    Full text link
    Semi-supervised clustering is an very important topic in machine learning and computer vision. The key challenge of this problem is how to learn a metric, such that the instances sharing the same label are more likely close to each other on the embedded space. However, little attention has been paid to learn better representations when the data lie on non-linear manifold. Fortunately, deep learning has led to great success on feature learning recently. Inspired by the advances of deep learning, we propose a deep transductive semi-supervised maximum margin clustering approach. More specifically, given pairwise constraints, we exploit both labeled and unlabeled data to learn a non-linear mapping under maximum margin framework for clustering analysis. Thus, our model unifies transductive learning, feature learning and maximum margin techniques in the semi-supervised clustering framework. We pretrain the deep network structure with restricted Boltzmann machines (RBMs) layer by layer greedily, and optimize our objective function with gradient descent. By checking the most violated constraints, our approach updates the model parameters through error backpropagation, in which deep features are learned automatically. The experimental results shows that our model is significantly better than the state of the art on semi-supervised clustering.Comment: 1

    A Survey on Multi-Task Learning

    Full text link
    Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL. First, we classify different MTL algorithms into several categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach, and decomposition approach, and then discuss the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, batch MTL models are difficult to handle this situation and online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing are reviewed to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works. Finally, we present theoretical analyses and discuss several future directions for MTL

    Machine learning based hyperspectral image analysis: A survey

    Full text link
    Hyperspectral sensors enable the study of the chemical properties of scene materials remotely for the purpose of identification, detection, and chemical composition analysis of objects in the environment. Hence, hyperspectral images captured from earth observing satellites and aircraft have been increasingly important in agriculture, environmental monitoring, urban planning, mining, and defense. Machine learning algorithms due to their outstanding predictive power have become a key tool for modern hyperspectral image analysis. Therefore, a solid understanding of machine learning techniques have become essential for remote sensing researchers and practitioners. This paper reviews and compares recent machine learning-based hyperspectral image analysis methods published in literature. We organize the methods by the image analysis task and by the type of machine learning algorithm, and present a two-way mapping between the image analysis tasks and the types of machine learning algorithms that can be applied to them. The paper is comprehensive in coverage of both hyperspectral image analysis tasks and machine learning algorithms. The image analysis tasks considered are land cover classification, target detection, unmixing, and physical parameter estimation. The machine learning algorithms covered are Gaussian models, linear regression, logistic regression, support vector machines, Gaussian mixture model, latent linear models, sparse linear models, Gaussian mixture models, ensemble learning, directed graphical models, undirected graphical models, clustering, Gaussian processes, Dirichlet processes, and deep learning. We also discuss the open challenges in the field of hyperspectral image analysis and explore possible future directions

    Classification of sparsely labeled spatio-temporal data through semi-supervised adversarial learning

    Full text link
    In recent years, Generative Adversarial Networks (GAN) have emerged as a powerful method for learning the mapping from noisy latent spaces to realistic data samples in high-dimensional space. So far, the development and application of GANs have been predominantly focused on spatial data such as images. In this project, we aim at modeling of spatio-temporal sensor data instead, i.e. dynamic data over time. The main goal is to encode temporal data into a global and low-dimensional latent vector that captures the dynamics of the spatio-temporal signal. To this end, we incorporate auto-regressive RNNs, Wasserstein GAN loss, spectral norm weight constraints and a semi-supervised learning scheme into InfoGAN, a method for retrieval of meaningful latents in adversarial learning. To demonstrate the modeling capability of our method, we encode full-body skeletal human motion from a large dataset representing 60 classes of daily activities, recorded in a multi-Kinect setup. Initial results indicate competitive classification performance of the learned latent representations, compared to direct CNN/RNN inference. In future work, we plan to apply this method on a related problem in the medical domain, i.e. on recovery of meaningful latents in gait analysis of patients with vertigo and balance disorders

    A Survey on Object Detection in Optical Remote Sensing Images

    Full text link
    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey 1) template matching-based object detection methods, 2) knowledge-based object detection methods, 3) object-based image analysis (OBIA)-based object detection methods, 4) machine learning-based object detection methods, and 5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.Comment: This manuscript is the accepted version for ISPRS Journal of Photogrammetry and Remote Sensin

    Active Multi-Kernel Domain Adaptation for Hyperspectral Image Classification

    Full text link
    Recent years have witnessed the quick progress of the hyperspectral images (HSI) classification. Most of existing studies either heavily rely on the expensive label information using the supervised learning or can hardly exploit the discriminative information borrowed from related domains. To address this issues, in this paper we show a novel framework addressing HSI classification based on the domain adaptation (DA) with active learning (AL). The main idea of our method is to retrain the multi-kernel classifier by utilizing the available labeled samples from source domain, and adding minimum number of the most informative samples with active queries in the target domain. The proposed method adaptively combines multiple kernels, forming a DA classifier that minimizes the bias between the source and target domains. Further equipped with the nested actively updating process, it sequentially expands the training set and gradually converges to a satisfying level of classification performance. We study this active adaptation framework with the Margin Sampling (MS) strategy in the HSI classification task. Our experimental results on two popular HSI datasets demonstrate its effectiveness
    • …
    corecore