11,048 research outputs found

    Practical Run-time Checking via Unobtrusive Property Caching

    Full text link
    The use of annotations, referred to as assertions or contracts, to describe program properties for which run-time tests are to be generated, has become frequent in dynamic programing languages. However, the frameworks proposed to support such run-time testing generally incur high time and/or space overheads over standard program execution. We present an approach for reducing this overhead that is based on the use of memoization to cache intermediate results of check evaluation, avoiding repeated checking of previously verified properties. Compared to approaches that reduce checking frequency, our proposal has the advantage of being exhaustive (i.e., all tests are checked at all points) while still being much more efficient than standard run-time checking. Compared to the limited previous work on memoization, it performs the task without requiring modifications to data structure representation or checking code. While the approach is general and system-independent, we present it for concreteness in the context of the Ciao run-time checking framework, which allows us to provide an operational semantics with checks and caching. We also report on a prototype implementation and provide some experimental results that support that using a relatively small cache leads to significant decreases in run-time checking overhead.Comment: 30 pages, 1 table, 170 figures; added appendix with plots; To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Modular Verification of Interrupt-Driven Software

    Full text link
    Interrupts have been widely used in safety-critical computer systems to handle outside stimuli and interact with the hardware, but reasoning about interrupt-driven software remains a difficult task. Although a number of static verification techniques have been proposed for interrupt-driven software, they often rely on constructing a monolithic verification model. Furthermore, they do not precisely capture the complete execution semantics of interrupts such as nested invocations of interrupt handlers. To overcome these limitations, we propose an abstract interpretation framework for static verification of interrupt-driven software that first analyzes each interrupt handler in isolation as if it were a sequential program, and then propagates the result to other interrupt handlers. This iterative process continues until results from all interrupt handlers reach a fixed point. Since our method never constructs the global model, it avoids the up-front blowup in model construction that hampers existing, non-modular, verification techniques. We have evaluated our method on 35 interrupt-driven applications with a total of 22,541 lines of code. Our results show the method is able to quickly and more accurately analyze the behavior of interrupts.Comment: preprint of the ASE 2017 pape

    An Approach to Static Performance Guarantees for Programs with Run-time Checks

    Full text link
    Instrumenting programs for performing run-time checking of properties, such as regular shapes, is a common and useful technique that helps programmers detect incorrect program behaviors. This is specially true in dynamic languages such as Prolog. However, such run-time checks inevitably introduce run-time overhead (in execution time, memory, energy, etc.). Several approaches have been proposed for reducing such overhead, such as eliminating the checks that can statically be proved to always succeed, and/or optimizing the way in which the (remaining) checks are performed. However, there are cases in which it is not possible to remove all checks statically (e.g., open libraries which must check their interfaces, complex properties, unknown code, etc.) and in which, even after optimizations, these remaining checks still may introduce an unacceptable level of overhead. It is thus important for programmers to be able to determine the additional cost due to the run-time checks and compare it to some notion of admissible cost. The common practice used for estimating run-time checking overhead is profiling, which is not exhaustive by nature. Instead, we propose a method that uses static analysis to estimate such overhead, with the advantage that the estimations are functions parameterized by input data sizes. Unlike profiling, this approach can provide guarantees for all possible execution traces, and allows assessing how the overhead grows as the size of the input grows. Our method also extends an existing assertion verification framework to express "admissible" overheads, and statically and automatically checks whether the instrumented program conforms with such specifications. Finally, we present an experimental evaluation of our approach that suggests that our method is feasible and promising.Comment: 15 pages, 3 tables; submitted to ICLP'18, accepted as technical communicatio

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking

    OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse

    Full text link
    OpenJML is a tool for checking code and specifications of Java programs. We describe our experience building the tool on the foundation of JML, OpenJDK and Eclipse, as well as on many advances in specification-based software verification. The implementation demonstrates the value of integrating specification tools directly in the software development IDE and in automating as many tasks as possible. The tool, though still in progress, has now been used for several college-level courses on software specification and verification and for small-scale studies on existing Java programs.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Exploiting Term Hiding to Reduce Run-time Checking Overhead

    Full text link
    One of the most attractive features of untyped languages is the flexibility in term creation and manipulation. However, with such power comes the responsibility of ensuring the correctness of these operations. A solution is adding run-time checks to the program via assertions, but this can introduce overheads that are in many cases impractical. While static analysis can greatly reduce such overheads, the gains depend strongly on the quality of the information inferred. Reusable libraries, i.e., library modules that are pre-compiled independently of the client, pose special challenges in this context. We propose a technique which takes advantage of module systems which can hide a selected set of functor symbols to significantly enrich the shape information that can be inferred for reusable libraries, as well as an improved run-time checking approach that leverages the proposed mechanisms to achieve large reductions in overhead, closer to those of static languages, even in the reusable-library context. While the approach is general and system-independent, we present it for concreteness in the context of the Ciao assertion language and combined static/dynamic checking framework. Our method maintains the full expressiveness of the assertion language in this context. In contrast to other approaches it does not introduce the need to switch the language to a (static) type system, which is known to change the semantics in languages like Prolog. We also study the approach experimentally and evaluate the overhead reduction achieved in the run-time checks.Comment: 26 pages, 10 figures, 2 tables; an extension of the paper version accepted to PADL'18 (includes proofs, extra figures and examples omitted due to space reasons

    A Dual-Engine for Early Analysis of Critical Systems

    Get PDF
    This paper presents a framework for modeling, simulating, and checking properties of critical systems based on the Alloy language -- a declarative, first-order, relational logic with a built-in transitive closure operator. The paper introduces a new dual-analysis engine that is capable of providing both counterexamples and proofs. Counterexamples are found fully automatically using an SMT solver, which provides a better support for numerical expressions than the existing Alloy Analyzer. Proofs, however, cannot always be found automatically since the Alloy language is undecidable. Our engine offers an economical approach by first trying to prove properties using a fully-automatic, SMT-based analysis, and switches to an interactive theorem prover only if the first attempt fails. This paper also reports on applying our framework to Microsoft's COM standard and the mark-and-sweep garbage collection algorithm.Comment: Workshop on Dependable Software for Critical Infrastructures (DSCI), Berlin 201

    Push-Button Tools for Application Developers, Full Formal Verification for Component Vendors

    Get PDF
    Software developers have varying abilities and develop software with differing reliability requirements. Sometimes reliability is critical and the developers have the mathematical capabilities to perform interactive theorem proving but this is not usually the case. We believe that most software developers need easy to use tools such as run-time assertion checkers and extended static checkers that can help them produce more reliable application-specific code cheaply. However, these lightweight approaches are not sufficient to allow the safe reuse of software components. To safely reuse software components we need comprehensive descriptions and assurances of correctness. These requirements can be provided for by full formal verification with the additional costs justified by the economies of scale. Our Omnibus verification tool provides integrated support for all these different types of verification. This paper illustrates these concepts through a sorting implementation
    • …
    corecore