2 research outputs found

    κ·Όμ ‘ ν‘œλ©΄ 원격 μ„Όμ‹± μ‹œμŠ€ν…œλ“€μ„ μ΄μš©ν•œ 지속적 식물 κ³„μ ˆ 및 νƒœμ–‘ μœ λ„ μ—½λ‘μ†Œ ν˜•κ΄‘λ¬Όμ§ˆ κ΄€μΈ‘

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : ν™˜κ²½λŒ€ν•™μ› ν˜‘λ™κ³Όμ • μ‘°κ²½ν•™, 2022.2. λ₯˜μ˜λ ¬.Monitoring phenology, physiological and structural changes in vegetation is essential to understand feedbacks of vegetation between terrestrial ecosystems and the atmosphere by influencing the albedo, carbon flux, water flux and energy. To this end, normalized difference vegetation index (NDVI) and solar-induced chlorophyll fluorescence (SIF) from satellite remote sensing have been widely used. However, there are still limitations in satellite remote sensing as 1) satellite imagery could not capture fine-scale spatial resolution of SIF signals, 2) satellite products are strongly influenced by condition of the atmosphere (e.g. clouds), thus it is challenging to know physiological and structural changes in vegetation on cloudy days and 3) satellite imagery captured a mixed signal from over- and understory, thus it is difficult to study the difference between overstory and understory phenology separately. Therefore, in order to more accurately understand the signals observed from the satellite, further studies using near-surface remote sensing system to collect ground-based observed data are needed. The main purpose of this dissertation is continuous observation of vegetation phenology and SIF using near-surface remote sensing system. To achieve the main goal, I set three chapters as 1) developing low-cost filter-based near-surface remote sensing system to monitor SIF continuously, 2) monitoring SIF in a temperate evergreen needleleaf forest continuously, and 3) understanding the relationships between phenology from in-situ multi-layer canopies and satellite products. In Chapter 2, I developed the filter-based smart surface sensing system (4S-SIF) to overcome the technical challenges of monitoring SIF in the field as well as to decrease sensor cost for more comprehensive spatial sampling. I verified the satisfactory spectral performance of the bandpass filters and confirmed that digital numbers (DN) from 4S-SIF exhibited linear relationships with the DN from the hyperspectral spectroradiometer in each band (R2 > 0.99). In addition, we confirmed that 4S-SIF shows relatively low variation of dark current value at various temperatures. Furthermore, the SIF signal from 4S-SIF represents a strong linear relationship with QEpro-SIF either changing the physiological mechanisms of the plant using DCMU (3-(3, 4-dichlorophenyl)-1, 1-dimethyurea) treatment. I believe that 4S-SIF will be a useful tool for collecting in-situ data across multiple spatial and temporal scales. Satellite-based SIF provides us with new opportunities to understand the physiological and structural dynamics of vegetation from canopy to global scales. However, the relationships between SIF and gross primary productivity (GPP) are not fully understood, which is mainly due to the challenges of decoupling structural and physiological factors that control the relationships. In Chapter 3, I reported the results of continuous observations of canopy-level SIF, GPP, absorbed photosynthetically active radiation (APAR), and chlorophyll: carotenoid index (CCI) in a temperate evergreen needleleaf forest. To understand the mechanisms underlying the relationship between GPP and SIF, I investigated the relationships of light use efficiency (LUE_p), chlorophyll fluorescence yield (Ξ¦_F), and the fraction of emitted SIF photons escaping from the canopy (f_esc) separately. I found a strongly non-linear relationship between GPP and SIF at diurnal and seasonal time scales (R2 = 0.91 with a hyperbolic regression function, daily). GPP saturated with APAR, while SIF did not. In addition, there were differential responses of LUE_p and Ξ¦_F to air temperature. While LUE_p reached saturation at high air temperatures, Ξ¦_F did not saturate. I also found that the canopy-level chlorophyll: carotenoid index was strongly correlated to canopy-level Ξ¦_F (R2 = 0.84) implying that Ξ¦_F could be more closely related to pigment pool changes rather than LUE_p. In addition, I found that the f_esc contributed to a stronger SIF-GPP relationship by partially capturing the response of LUE_p to diffuse light. These findings can help refine physiological and structural links between canopy-level SIF and GPP in evergreen needleleaf forests. We do not fully understand what satellite NDVI derived leaf-out and full leaf dates actually observe because deciduous broadleaf forest consists of multi-layer canopies typically and mixed-signal from multi-layer canopies could affect satellite observation. Ultimately, we have the following question: What phenology do we actually see from space compared to ground observations on multi-layer canopy phenology? In Chapter 4, I reported the results of 8 years of continuous observations of multi-layer phenology and climate variables in a deciduous broadleaf forest, South Korea. Multi-channel spectrometers installed above and below overstory canopy allowed us to monitor over- and understory canopy phenology separately, continuously. I evaluated the widely used phenology detection methods, curvature change rate and threshold with NDVI observed above top of the canopy and compared leaf-out and full leaf dates from both methods to in-situ observed multi-layer phenology. First, I found that NDVI from the above canopy had a strong linear relationship with satellites NDVI (R2=0.95 for MODIS products and R2= 0.85 for Landsat8). Second, leaf-out dates extracted by the curvature change rate method and 10% threshold were well matched with understory leaf-out dates. Third, the full-leaf dates extracted by the curvature change rate method and 90% threshold were similar to overstory full-leaf dates. Furthermore, I found that overstory leaf-out dates were closely correlated to accumulated growing degree days (AGDD) while understory leaf-out dates were related to AGDD and also sensitive to the number of chill days (NCD). These results suggest that satellite-based leaf-out and full leaf dates represent understory and overstory signals in the deciduous forest site, which requires caution when using satellite-based phenology data into future prediction as overstory and understory canopy show different sensitivities to AGDD and NCD.식물 κ³„μ ˆ 및 μ‹μƒμ˜ 생리학적, ꡬ쑰적인 λ³€ν™”λ₯Ό μ§€μ†μ μœΌλ‘œ λͺ¨λ‹ˆν„°λ§ ν•˜λŠ” 것은 μœ‘μƒμƒνƒœκ³„μ™€ λŒ€κΈ°κΆŒ μ‚¬μ΄μ˜ μ—λ„ˆμ§€, νƒ„μ†Œ μˆœν™˜ λ“±μ˜ ν”Όλ“œλ°±μ„ μ΄ν•΄ν•˜λŠ”λ° ν•„μˆ˜μ μ΄λ‹€. 이λ₯Ό κ΄€μΈ‘ν•˜κΈ° μœ„ν•˜μ—¬ μœ„μ„±μ—μ„œ κ΄€μΈ‘λœ μ •κ·œν™” 식생 μ§€μˆ˜ (NDVI) νƒœμ–‘ μœ λ„ μ—½λ‘μ†Œ ν˜•κ΄‘λ¬Όμ§ˆ (SIF)λŠ” λŒ€μ€‘μ μœΌλ‘œ μ‚¬μš©λ˜κ³  μžˆλ‹€. κ·ΈλŸ¬λ‚˜, 우주 μœ„μ„± 기반의 μžλ£ŒλŠ” λ‹€μŒκ³Ό 같은 ν•œκ³„μ λ“€μ΄ μ‘΄μž¬ν•œλ‹€. 1) μ•„μ§κΉŒμ§€ κ³ ν•΄μƒλ„μ˜ μœ„μ„± 기반 SIF μžλ£ŒλŠ” μ—†κ³ , 2) μœ„μ„± μžλ£Œλ“€μ€ λŒ€κΈ°μ˜ 질 (예, ꡬ름)에 영ν–₯을 λ°›μ•„, 흐린 λ‚ μ˜ μ‹μƒμ˜ 생리학적, ꡬ쑰적 λ³€ν™”λ₯Ό νƒμ§€ν•˜κΈ° νž˜λ“€λ‹€. λ˜ν•œ, 3) μœ„μ„± μ΄λ―Έμ§€λŠ” 상뢀 식생과 ν•˜λΆ€ 식생이 ν˜Όν•©λ˜μ–΄ μ„žμΈ μ‹ ν˜Έλ₯Ό νƒμ§€ν•˜κΈ° λ•Œλ¬Έμ—, 각 측의 식물 κ³„μ ˆμ„ 각각 μ—°κ΅¬ν•˜κΈ°μ— 어렀움이 μžˆλ‹€. κ·ΈλŸ¬λ―€λ‘œ, μœ„μ„±μ—μ„œ νƒμ§€ν•œ μ‹ ν˜Έλ₯Ό ν‰κ°€ν•˜κ³ , μ‹μƒμ˜ 생리학적, ꡬ쑰적 λ³€ν™”λ₯Ό 보닀 μ •ν™•νžˆ μ΄ν•΄ν•˜κΈ° μœ„ν•΄μ„œλŠ” κ·Όμ ‘ ν‘œλ©΄ 원격 μ„Όμ‹± μ‹œμŠ€ν…œμ„ μ΄μš©ν•œ μ‹€μΈ‘ 자료 기반의 연ꡬ듀이 μš”κ΅¬λœλ‹€. λ³Έ ν•™μœ„λ…Όλ¬Έμ˜ μ£Ό λͺ©μ μ€ κ·Όμ ‘ ν‘œλ©΄ 원격 μ„Όμ‹± μ‹œμŠ€ν…œμ„ μ΄μš©ν•˜μ—¬ 식물 κ³„μ ˆ 및 SIFλ₯Ό ν˜„μž₯μ—μ„œ μ§€μ†μ μœΌλ‘œ μ‹€μΈ‘ν•˜κ³ , μœ„μ„± μ˜μƒ 기반의 연ꡬ가 κ°–κ³  μžˆλŠ” ν•œκ³„μ  및 κΆκΈˆμ¦λ“€μ„ ν•΄κ²° 및 λ³΄μ™„ν•˜λŠ” 것이닀. 이 λͺ©μ μ„ λ‹¬μ„±ν•˜κΈ° μœ„ν•˜μ—¬, μ•„λž˜μ™€ 같은 세가지 Chapter: 1) SIFλ₯Ό κ΄€μΈ‘ν•˜κΈ° μœ„ν•œ ν•„ν„° 기반의 μ €λ ΄ν•œ κ·Όμ ‘ ν‘œλ©΄ μ„Όμ‹± μ‹œμŠ€ν…œ 개발, 2)μ˜¨λŒ€ μΉ¨μ—½μˆ˜λ¦Όμ—μ„œμ˜ 연속적인 SIF κ΄€μΈ‘, 3)μœ„μ„± 기반의 식물 κ³„μ ˆκ³Ό μ‹€μΈ‘ν•œ λ‹€μΈ΅ μ‹μƒμ˜ 식물 κ³„μ ˆ λΉ„κ΅λ‘œ κ΅¬μ„±ν•˜κ³ , 이λ₯Ό μ§„ν–‰ν•˜μ˜€λ‹€. SIFλŠ” μ‹μƒμ˜ ꡬ쑰적, 생리학적 λ³€ν™”λ₯Ό μ΄ν•΄ν•˜κ³ , μΆ”μ •ν•˜λŠ” 인자둜 μ‚¬μš©λ  수 μžˆμ–΄, SIFλ₯Ό ν˜„μž₯μ—μ„œ κ΄€μΈ‘ν•˜κΈ° μœ„ν•œ λ‹€μ–‘ν•œ κ·Όμ ‘ ν‘œλ©΄ 원격 μ„Όμ‹± μ‹œμŠ€ν…œλ“€μ΄ 졜근 μ œμ‹œλ˜μ–΄ 였고 μžˆλ‹€. κ·ΈλŸ¬λ‚˜, μ•„μ§κΉŒμ§€ SIFλ₯Ό κ΄€μΈ‘ν•˜κΈ° μœ„ν•œ μƒμ—…μ μœΌλ‘œ μœ ν†΅λ˜λŠ” κ΄€μΈ‘ μ‹œμŠ€ν…œμ€ ν˜„μ €νžˆ λΆ€μ‘±ν•˜λ©°, λΆ„κ΄‘κ³„μ˜ ꡬ쑰적 νŠΉμ„±μƒ ν˜„μž₯μ—μ„œ κ΄€μΈ‘ μ‹œμŠ€ν…œμ„ 보정 및 κ΄€λ¦¬ν•˜κΈ°κ°€ μ–΄λ €μ›Œ 높은 질의 SIFλ₯Ό μ·¨λ“ν•˜λŠ” 것은 맀우 도전 적인 뢄야이닀. λ³Έ ν•™μœ„ λ…Όλ¬Έμ˜ Chapter 2μ—μ„œλŠ” SIFλ₯Ό ν˜„μž₯μ—μ„œ 보닀 μ†μ‰½κ²Œ κ΄€μΈ‘ν•˜κΈ° μœ„ν•œ ν•„ν„° 기반의 κ·Όμ ‘ ν‘œλ©΄ μ„Όμ‹± μ‹œμŠ€ν…œ(Smart Surface Sensing System, 4S-SIF)을 κ°œλ°œν•˜μ˜€λ‹€. μ„Όμ„œλŠ” λŒ€μ—­ ν•„ν„°λ“€κ³Ό ν¬ν† λ‹€μ΄μ˜€λ“œκ°€ κ²°ν•©λ˜μ–΄ 있으며, μ„œλ³΄ λͺ¨ν„°λ₯Ό μ‚¬μš©ν•˜μ—¬ λŒ€μ—­ ν•„ν„° 및 κ΄€μΈ‘ λ°©ν–₯을 μžλ™μ μœΌλ‘œ λ³€κ²½ν•¨μœΌλ‘œμ¨, ν•œ 개의 ν¬ν† λ‹€μ΄μ˜€λ“œκ°€ 3개의 파μž₯ λ²”μœ„(757, 760, 770 nm)의 λΉ› 및 νƒœμ–‘μœΌλ‘œλΆ€ν„° μž…μ‚¬λ˜λŠ” κ΄‘λŸ‰κ³Ό μ‹μƒμœΌλ‘œ λ°˜μ‚¬/방좜된 κ΄‘λŸ‰μ„ κ΄€μΈ‘ν•  수 μžˆλ„λ‘ κ³ μ•ˆλ˜μ—ˆλ‹€. ν¬ν† λ‹€μ΄μ˜€λ“œλ‘œλΆ€ν„° μΈμ‹λœ 디지털 수치 값은 μƒμ—…μ μœΌλ‘œ νŒλ§€λ˜λŠ” μ΄ˆκ³ ν•΄μƒλ„ 뢄광계(QE Pro, Ocean Insight)와 λšœλ ·ν•œ μ„ ν˜• 관계λ₯Ό λ³΄μ΄λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€ (R2 > 0.99). μΆ”κ°€μ μœΌλ‘œ, 4S-SIFμ—μ„œ κ΄€μΈ‘λœ SIF와 μ΄ˆκ³ ν•΄μƒλ„ 뢄광계λ₯Ό μ΄μš©ν•˜μ—¬ μΆ”μΆœν•œ SIFκ°€ μ„ ν˜•μ μΈ 관계λ₯Ό μ΄λ£¨λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. μ‹μƒμ˜ 생리학적 λ³€ν™”λ₯Ό μΌμœΌν‚€λŠ” ν™”ν•™ 물질인 DCMU(3-(3, 4-dichlorophenyl)-1, 1-dimethyurea)을 μ²˜λ¦¬ν–ˆμŒμ—λ„ λΆˆκ΅¬ν•˜κ³ , μ‚°μΆœλœ SIF듀은 μ„ ν˜• 관계λ₯Ό λ³΄μ˜€λ‹€. λ³Έ μ„Όμ„œλŠ” κΈ°μ‘΄ μ‹œμŠ€ν…œλ“€μ— λΉ„ν•΄ μ‚¬μš©ν•˜κΈ° 쉽고 κ°„λ‹¨ν•˜λ©°, μ €λ ΄ν•˜κΈ° λ•Œλ¬Έμ— λ‹€μ–‘ν•œ μ‹œκ³΅κ°„μ  μŠ€μΌ€μΌμ˜ SIFλ₯Ό κ΄€μΈ‘ν•  수 μžˆλ‹€λŠ” μž₯점이 μžˆλ‹€. μœ„μ„± 기반의 SIFλ₯Ό μ΄μš©ν•˜μ—¬ 총일차생산성(gross primary productivity, GPP)을 μΆ”μ •ν•˜λŠ” μ—°κ΅¬λŠ” 졜근 νƒ„μ†Œ μˆœν™˜ 연ꡬ λΆ„μ•Όμ—μ„œ 각광받고 μžˆλŠ” 연ꡬ μ£Όμ œμ΄λ‹€. κ·ΈλŸ¬λ‚˜, SIF와 GPP의 κ΄€κ³„λŠ” μ—¬μ „νžˆ λ§Žμ€ λΆˆν™•μ‹€μ„±μ„ μ§€λ‹ˆκ³  μžˆλŠ”λ°, μ΄λŠ” SIF-GPP 관계λ₯Ό μ‘°μ ˆν•˜λŠ” μ‹μƒμ˜ ꡬ쑰적 및 생리학적 μš”μΈμ„ λ”°λ‘œ λΆ„λ¦¬ν•˜μ—¬ κ³ μ°°ν•œ 연ꡬ듀이 λΆ€μ‘±ν•˜κΈ° λ•Œλ¬Έμ΄λ‹€. λ³Έ ν•™μœ„ λ…Όλ¬Έμ˜ Chapter 3μ—μ„œλŠ” μ§€μ†μ μœΌλ‘œ SIF, GPP, 흑수된 κ΄‘ν•©μ„±μœ νš¨λ³΅μ‚¬λŸ‰ (absorbed photosynthetically active radiation, APAR), 그리고 ν΄λ‘œλ‘œν•„κ³Ό μΉ΄λ‘œν‹°λ…Έμ΄λ“œμ˜ λΉ„μœ¨ 인자 (chlorophyll: carotenoid index, CCI)λ₯Ό μ˜¨λŒ€μΉ¨μ—½μˆ˜λ¦Όμ—μ„œ μ—°μ†μ μœΌλ‘œ κ΄€μΈ‘ν•˜μ˜€λ‹€. SIF-GPP κ΄€κ³„μ˜ ꡬ체적인 λ©”μ»€λ‹ˆμ¦˜ 관계λ₯Ό 밝히기 μœ„ν•˜μ—¬, κ΄‘ 이용효율 (light use efficiency, LUE_p), μ—½λ‘μ†Œ ν˜•κ΄‘ μˆ˜λ“λ₯  (chlorophyll fluorescence yield, Ξ¦_F) 그리고 SIF κ΄‘μžκ°€ κ΅°λ½μœΌλ‘œλΆ€ν„° λ°©μΆœλ˜λŠ” λΉ„μœ¨ (escape fraction, f_esc)을 각각 λ„μΆœν•˜κ³  νƒκ΅¬ν•˜μ˜€λ‹€. SIF와 GPP의 κ΄€κ³„λŠ” λšœλ ·ν•œ λΉ„ μ„ ν˜•μ μΈ 관계λ₯Ό λ³΄μ΄λŠ” 것을 ν™•μΈν–ˆμœΌλ©°(R2 = 0.91 with a hyperbolic regression function, daily), 일주기 λ‹¨μœ„μ—μ„œ SIFλŠ” APAR에 λŒ€ν•΄ μ„ ν˜•μ μ΄μ—ˆμ§€λ§Œ GPPλŠ” APAR에 λŒ€ν•΄ λšœλ ·ν•œ 포화 관계λ₯Ό λ³΄μ΄λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. μΆ”κ°€μ μœΌλ‘œ LUE_p 와 Ξ¦_F κ°€ λŒ€κΈ° μ˜¨λ„μ— 따라 λ°˜μ‘ν•˜λŠ” 정도가 λ‹€λ₯Έ 것을 ν™•μΈν•˜μ˜€λ‹€. LUE_pλŠ” 높은 μ˜¨λ„μ—μ„œ 포화 λ˜μ—ˆμ§€λ§Œ, Ξ¦_FλŠ” 포화 νŒ¨ν„΄μ„ 확인할 수 μ—†μ—ˆλ‹€. λ˜ν•œ, ꡰ락 μˆ˜μ€€μ—μ„œμ˜ CCI와 Ξ¦_Fκ°€ λšœλ ·ν•œ 상관 관계λ₯Ό λ³΄μ˜€λ‹€(R2 = 0.84). μ΄λŠ” Ξ¦_Fκ°€ μ—½λ‘μ†Œ μƒ‰μ†Œμ— 영ν–₯을 LUE_p에 λΉ„ν•΄ 더 κ°•ν•œ 관계가 μžˆμ„ 수 μžˆμŒμ„ μ‹œμ‚¬ν•œλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, f_escκ°€ νƒœμ–‘κ΄‘μ˜ μ‚°λž€λœ 정도에 따라 λ°˜μ‘μ„ ν•˜μ—¬, Ξ¦_F와 LUE_p의 κ°•ν•œ 상관 관계λ₯Ό ν˜•μ„±ν•˜λŠ”λ° κΈ°μ—¬ν•˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ λ°œκ²¬μ€ μ˜¨λŒ€ μΉ¨μ—½μˆ˜λ¦Όμ—μ„œ ꡰ락 μˆ˜μ€€μ˜ SIF-GPP관계λ₯Ό 생리학적 및 ꡬ쑰적 μΈ‘λ©΄μ—μ„œ μ΄ν•΄ν•˜κ³  규λͺ…ν•˜λŠ”λ° 큰 도움이 될 것이닀. 식물 κ³„μ ˆμ€ 식생이 철을 따라 주기적으둜 λ‚˜νƒ€λ‚΄λŠ” λ³€ν™”λ₯Ό κ΄€μΈ‘ν•˜λŠ” λ°˜μ‘μ΄λ‹€. 식물 κ³„μ ˆμ€ μœ‘μƒμƒνƒœκ³„μ™€ λŒ€κΈ°κΆŒ μ‚¬μ΄μ˜ 물질 μˆœν™˜μ„ μ΄ν•΄ν•˜λŠ”λ° 맀우 μ€‘μš”ν•˜λ‹€. μœ„μ„± 기반의 NDVIλŠ” 식물 κ³„μ ˆμ„ νƒμ§€ν•˜κ³  μ—°κ΅¬ν•˜λŠ”λ° κ°€μž₯ λŒ€μ€‘μ μœΌλ‘œ μ‚¬μš©λœλ‹€. κ·ΈλŸ¬λ‚˜, ν™œμ—½μˆ˜λ¦Όμ—μ„œμ˜ μœ„μ„± NDVI 기반의 κ°œμ—½ μ‹œκΈ° 및 μ„±μˆ™ μ‹œκΈ°κ°€ μ‹€μ œ μ–΄λŠ μ‹œμ μ„ νƒμ§€ν•˜λŠ”μ§€λŠ” λΆˆλΆ„λͺ…ν•˜λ‹€. μ‹€μ œ ν™œμ—½μˆ˜λ¦Όμ€ λ‹€μΈ΅ 식생 ꡬ쑰의 μ‚Όμ°¨μ›μœΌλ‘œ 이루어져 μžˆλŠ” 반면, μœ„μ„± μ˜μƒμ€ λ‹€μΈ΅ μ‹μƒμ˜ μ‹ ν˜Έκ°€ μ„žμ—¬ μžˆλŠ” μ΄μ°¨μ›μ˜ 결과물이기 λ•Œλ¬Έμ΄λ‹€. λ”°λΌμ„œ, μœ„μ„± NDVI 기반의 식물 κ³„μ ˆμ΄ λ‹€μΈ΅ 식생 ꡬ쑰λ₯Ό 이루고 μžˆλŠ” ν™œμ—½μˆ˜λ¦Όμ—μ„œ μ‹€μ œ ν˜„μž₯ κ΄€μΈ‘κ³Ό λΉ„κ΅ν•˜μ˜€μ„ λ•Œ μ–΄λŠ μ‹œμ μ„ νƒμ§€ν•˜λŠ”μ§€μ— λŒ€ν•œ ꢁ금증이 λ‚¨λŠ”λ‹€. λ³Έ ν•™μœ„ λ…Όλ¬Έμ˜ Chapter 4μ—μ„œλŠ” μ§€μ†μ μœΌλ‘œ 8λ…„ λ™μ•ˆ ν™œμ—½μˆ˜λ¦Όλ‚΄μ˜ λ‹€μΈ΅ μ‹μƒμ˜ 식물 κ³„μ ˆμ„ κ·Όμ ‘ ν‘œλ©΄ 원격 μ„Όμ‹± μ‹œμŠ€ν…œμ„ μ΄μš©ν•˜μ—¬ κ΄€μΈ‘ν•˜κ³ , μœ„μ„± NDVI 기반의 식물 κ³„μ ˆκ³Ό λΉ„κ΅ν•˜μ˜€λ‹€. 닀채널 뢄광계λ₯Ό 상뢀 μ‹μƒμ˜ μœ„μ™€ μ•„λž˜μ— μ„€μΉ˜ν•¨μœΌλ‘œμ¨, 상뢀 식생과 ν•˜λΆ€ μ‹μƒμ˜ 식물 κ³„μ ˆμ„ 각각 μ—°μ†μ μœΌλ‘œ κ΄€μΈ‘ν•˜μ˜€λ‹€. 식물 κ³„μ ˆμ„ νƒμ§€ν•˜κΈ° μœ„ν•˜μ—¬ κ°€μž₯ 많이 μ‚¬μš©λ˜λŠ” 방법인 1) μ—­μΉ˜λ₯Ό μ΄μš©ν•˜λŠ” 방법과 2) μ΄κ³„λ„ν•¨μˆ˜λ₯Ό μ΄μš©ν•˜λŠ” 방법을 μ‚¬μš©ν•˜μ—¬ κ°œμ—½ μ‹œκΈ° 및 μ„±μˆ™ μ‹œκΈ°λ₯Ό κ³„μ‚°ν•˜κ³  이λ₯Ό λ‹€μΈ΅ μ‹μƒμ˜ 식물 κ³„μ ˆκ³Ό λΉ„κ΅ν•˜μ˜€λ‹€. λ³Έ 연ꡬ κ²°κ³Ό, 첫번째둜, ꡰ락의 μƒμΈ΅λΆ€μ—μ„œ μ‹€μΈ‘ν•œ NDVI와 μœ„μ„± 기반의 NDVIκ°€ κ°•ν•œ μ„ ν˜• 관계λ₯Ό λ³΄μ΄λŠ” 것을 ν™•μΈν–ˆλ‹€ (R2=0.95 λŠ” MODIS μ˜μƒλ“€ 및 R2= 0.85 λŠ” Landsat8). λ‘λ²ˆμ§Έλ‘œ, μ΄κ³„λ„ν•¨μˆ˜ 방법과 10%의 μ—­μΉ˜ 값을 μ΄μš©ν•œ 방법이 λΉ„μŠ·ν•œ κ°œμ—½ μ‹œκΈ°λ₯Ό μΆ”μ •ν•˜λŠ” 것을 ν™•μΈν•˜μ˜€μœΌλ©°, ν•˜λΆ€ μ‹μƒμ˜ κ°œμ—½ μ‹œκΈ°μ™€ λΉ„μŠ·ν•œ μ‹œκΈ°μž„μ„ ν™•μΈν•˜μ˜€λ‹€. μ„Έλ²ˆμ§Έλ‘œ, μ΄κ³„λ„ν•¨μˆ˜ 방법과 90%의 μ—­μΉ˜ 값을 μ΄μš©ν•œ 방법이 λΉ„μŠ·ν•œ μ„±μˆ™ μ‹œκΈ°λ₯Ό μ‚°μΆœν•˜μ˜€μœΌλ©°, μ΄λŠ” 상뢀 μ‹μƒμ˜ μ„±μˆ™ μ‹œκΈ°μ™€ λΉ„μŠ·ν•˜μ˜€λ‹€. μΆ”κ°€μ μœΌλ‘œ 상뢀 μ‹μƒμ˜ κ°œμ—½ μ‹œκΈ°μ™€ ν•˜λΆ€ μ‹μƒμ˜ κ°œμ—½ μ‹œκΈ°κ°€ μ˜¨λ„μ™€ λ°˜μ‘ν•˜λŠ” 정도가 λšœλ ·ν•˜κ²Œ 차이가 λ‚˜λŠ” 것을 확인할 수 μžˆμ—ˆλ‹€. 상뢀 μ‹μƒμ˜ κ°œμ—½ μ‹œκΈ°λŠ” 적산 생μž₯ μ˜¨λ„ 일수 (AGDD)와 κ°•ν•œ 상관성을 λ³΄μ˜€κ³ , ν•˜λΆ€ μ‹μƒμ˜ κ°œμ—½ μ‹œκΈ°λŠ” AGDD와 연관성을 κ°–κ³  μžˆμ„ 뿐만 μ•„λ‹ˆλΌ μΆ”μœ„ 일수(NCD)에도 λ―Όκ°ν•˜κ²Œ λ°˜μ‘ν•˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ κ²°κ³ΌλŠ” μœ„μ„± NDVI 기반의 κ°œμ—½ μ‹œκΈ°λŠ” ν•˜λΆ€ μ‹μƒμ˜ κ°œμ—½ μ‹œκΈ°μ™€ 연관성이 λ†’κ³ , μ„±μˆ™ μ‹œκΈ°λŠ” 상뢀 μ‹μƒμ˜ μ„±μˆ™ μ‹œκΈ°μ™€ λΉ„μŠ·ν•˜λ‹€λŠ” 것을 μ˜λ―Έν•œλ‹€. λ˜ν•œ, 상뢀 식생과 ν•˜λΆ€ 식생이 μ˜¨λ„μ— λ‹€λ₯Έ 민감성을 κ°–κ³  μžˆμ–΄, μœ„μ„±μ—μ„œ μ‚°μΆœλœ 식물 κ³„μ ˆμ„ μ΄μš©ν•˜μ—¬ κΈ°ν›„λ³€ν™”λ₯Ό μ΄ν•΄ν•˜κ³ μž ν•  λ•Œ, μ–΄λ–€ 측의 식생이 μœ„μ„± μ˜μƒμ— 주된 영ν–₯을 λ―ΈμΉ˜λŠ”μ§€ κ³ λ €ν•΄μ•Ό ν•œλ‹€λŠ” 것을 μ‹œμ‚¬ν•œλ‹€. μœ„μ„±μ€ 넓은 μ§€μ—­μ˜ λ³€ν™”λ₯Ό μ†μ‰½κ²Œ λͺ¨λ‹ˆν„°λ§ν•  수 μžˆμ–΄ λ§Žμ€ κ°€λŠ₯성을 κ°–κ³  μžˆλŠ” λ„κ΅¬μ΄μ§€λ§Œ, 보닀 μ •ν™•ν•œ μœ„μ„± κ΄€μΈ‘ 값을 μ΄ν•΄ν•˜κΈ° μœ„ν•΄μ„œλŠ” ν˜„μž₯μ—μ„œ κ΄€μΈ‘λœ 자료λ₯Ό 기반으둜 ν•œ 검증이 μš”κ΅¬λœλ‹€. λ³Έ ν•™μœ„ λ…Όλ¬Έμ—μ„œλŠ” 1) κ·Όμ ‘ ν‘œλ©΄ μ„Όμ‹± μ‹œμŠ€ν…œμ„ 개발, 2) κ·Όμ ‘ ν‘œλ©΄ μ„Όμ‹± μ‹œμŠ€ν…œμ„ ν™œμš©ν•œ μ‹μƒμ˜ 생리학적 ꡬ쑰적 λ³€ν™”μ˜ 지속적인 κ΄€μΈ‘, 3) λ‹€μΈ΅ 식생 κ΅¬μ‘°μ—μ„œ κ΄€μΈ‘λ˜λŠ” 식물 κ³„μ ˆ 및 μœ„μ„±μ—μ„œ μΆ”μ •λœ 식물 κ³„μ ˆμ˜ μ—°κ΄€μ„± 평가λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. κ°œλ°œν•œ κ·Όμ ‘ ν‘œλ©΄ μ„Όμ„œλŠ” 상업 μ„Όμ„œλ“€κ³Ό λΉ„κ΅ν–ˆμ„ λ•Œ, κ°€κ²©μ μœΌλ‘œ μ €λ ΄ν•˜κ³  손 μ‰½κ²Œ μ‚¬μš©ν•  수 μžˆμ—ˆμœΌλ©°, μ„±λŠ₯μ μœΌλ‘œλ„ 뢀쑱함이 μ—†μ—ˆλ‹€. κ·Όμ ‘ ν‘œλ©΄ μ„Όμ‹± μ‹œμŠ€ν…œμ„ μ΄μš©ν•˜μ—¬ SIFλ₯Ό μ˜¨λŒ€ μΉ¨μ—½μˆ˜λ¦Όμ—μ„œ μ§€μ†μ μœΌλ‘œ κ΄€μΈ‘ν•œ κ²°κ³Ό, 총일차생산성과 SIFλŠ” λΉ„μ„ ν˜• 관계λ₯Ό κ°–λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. μ΄λŠ” λ§Žμ€ μ„ ν–‰ μ—°κ΅¬λ“€μ—μ„œ λ°œν‘œν•œ μœ„μ„± 기반의 SIF와 GPPκ°€ μ„ ν˜•μ μΈ 관계λ₯Ό λ³΄μΈλ‹€λŠ” κ²ƒκ³ΌλŠ” λ‹€μ†Œ μƒλ°˜λœ 결과이닀. λ‹€μΈ‘ μ‹μƒμ˜ λ΄„μ²  식물 κ³„μ ˆμ„ μ—°μ†μ μœΌλ‘œ κ΄€μΈ‘ν•˜κ³ , μœ„μ„± 기반의 식물 κ³„μ ˆκ³Ό λΉ„κ΅ν‰κ°€ν•œ μ—°κ΅¬μ—μ„œλŠ” μœ„μ„± 기반의 κ°œμ—½ μ‹œκΈ°λŠ” ν•˜λΆ€ 식생에 영ν–₯을 주둜 λ°›κ³ , μ„±μˆ™ μ‹œκΈ°λŠ” 상뢀 μ‹μƒμ˜ μ‹œκΈ°μ™€ λΉ„μŠ·ν•œ 것을 ν™•μΈν•˜μ˜€λ‹€. 즉, κ·Όμ ‘ ν‘œλ©΄ μ„Όμ‹± μ‹œμŠ€ν…œμ„ μ΄μš©ν•˜μ—¬ ν˜„μž₯μ—μ„œ μ‹€μΈ‘ν•œ κ²°κ³ΌλŠ” μœ„μ„± μ˜μƒμ„ ν™œμš©ν•œ μ—°κ΅¬λ“€κ³ΌλŠ” λ‹€λ₯Έ κ²°κ³Όλ₯Ό 보일 μˆ˜λ„ 있으며, μœ„μ„± μ˜μƒμ„ 평가 및 μ΄ν•΄ν•˜λŠ”λ° μ‚¬μš©λ  수 μžˆλ‹€. λ”°λΌμ„œ, 보닀 μ •ν™•ν•œ μ‹μƒμ˜ ꡬ쑰적, 생리학적 λ©”μ»€λ‹ˆμ¦˜μ„ μ΄ν•΄ν•˜κΈ° μœ„ν•΄μ„œλŠ” κ·Όμ ‘ ν‘œλ©΄ 센싱을 ν™œμš©ν•œ ν˜„μž₯μ—μ„œ κ΅¬μΆ•ν•œ 자료 기반의 더 λ§Žμ€ 연ꡬ듀이 ν•„μš”ν•˜λ‹€λŠ” 것을 μ‹œμ‚¬ν•œλ‹€.Abstract i Chapter 1. Introduction 2 1. Background 2 2. Purpose 5 Chapter 2. Monitoring SIF using a filter-based near surface remote sensing system 9 1. Introduction 9 2. Instrument desing and technical spefications of the filter-based smart surface sensing system (4S-SIF) 12 2.1. Ultra-narrow band pass filter 14 2.2. Calibration of 4S-SIF 15 2.3. Temperature and humidity response 16 2.4. Evaluate SIF quality from 4S-SIF in the field 17 3. Results 20 4. Discussion 23 Chapter 3. SIF is non-linearly related to canopy photosynthesis in a temperate evergreen needleleaf forest during fall transition 27 1. Introduction 27 2. Methods and Materials 31 2.1. Study site 31 2.2. Leaf-level fluorescence measurement 32 2.3. Canopy-level SIF and spectral reflectance measurement 34 2.4. SIF retrieval 37 2.5. Canopy-level photosynthesis estimates 38 2.6. Meteorological variables and APAR 39 2.7. Statistical analysis 40 3. Results 41 4. Discussion 48 4.1. Non-linear relationships between SIF and GPP 49 4.2. Role of f_esc in SIF-GPP relationship 53 4.3. Implications of non-linear SIF-GPP relationship in temperate ENF 54 5. Conclusion 57 6. Appendix 59 Chapter 4. Monitoring spring phenology of multi-layer canopy in a deciduous broadleaf forest: What signal do satellites actually see in space 65 1. Introduction 65 2. Materials and Methods 69 2.1. Study site 69 2.2. Multi-layer spectral reflectance and transmittance measurement 70 2.3. Phenometrics detection 72 2.4. In-situ multi-layer phenology 74 2.5. Satellite remote sensing data 75 2.6. Meteorological variables 75 3. Results 76 3.1. Seasonal to interannual variations of NDVI, 1-transmittance, and air temperature 76 3.2. Inter-annual variation of leaf-out and full-leaf dates 78 3.3. The relationships between dates calculated according tothreshold and in-situ multi-layer phenology 80 3.4. The relationship between multi-layer phenology, AGDD and NCD 81 4. Discussion 82 4.1. How do satellite-based leaf-out and full-leaf dates differ from in-situ multi-layer phenology 83 4.2. Are the 10 % and 90 % thresholds from satellite-basedNDVI always well matched with the leaf-out and full-leaf dates calculated by the curvature change rate 86 4.3. What are the implications of the difference between satellite-based and multi-layer phenology 87 4.4. Limitations and implications for future studies 89 5. Conclusion 91 6. Appendix 92 Chapter 5. Conclusion 114 Abstract in Korean 115λ°•

    DIAGNOSTIC ANALYSIS OF TERRESTRIAL GROSS PRIMARY PRODUCTIVITY USING REMOTE SENSING AND IN SITU OBSERVATIONS

    Get PDF
    Vegetation play a critical role in the interactions between atmosphere and biosphere. CO2 fixed by plants through photosynthesis process at ecosystem scale is termed as gross primary production (GPP). It is also the first step CO2 entering the biosphere from the atmosphere. It not only fuels the ecosystem functioning, but also drives the global carbon cycle. Accurate estimation of the ecosystem photosynthetic carbon uptake at a global scale can help us better understand the global carbon budget, and the ecosystem sensitivity to the global climate change. Satellite observations have the advantage of global coverage and high revisit cycle, hence, are ideal for global GPP estimation. The simple production efficiency model that utilize the remote sensing imagery and climate data can provide reasonably well estimates of GPP at a global scale. With the solar induced chlorophyll fluorescence (SIF) being retrieved from satellite observations, new opportunities emerge in directly estimating photosynthesis from the energy absorption and partitioning perspective. In this thesis, by combining observations from both in situ and remotely acquired, I tried to (1) investigate the GPP SIF relationship using data from observations and model simulations; (2) improve a production efficiency model (vegetation photosynthesis model, VPM) and apply it to the regional and global scale; (3) investigate the GPP and SIF sensitivity to drought at different ecosystems; (4) explore the global interannual variation of GPP and its contributing factors. Chapter 2 uses site level observations of both SIF and GPP to explore their linkage at both leaf and canopy/ecosystem scale throughout a growing season. Two drought events happened during this growing season also highlight the advantage of SIF in early drought warning and its close linkage to photosynthetic activity. Chapter 3 compares the GPP and SIF relationships using both instantaneous and daily integrated observations, the daily GPP and satellite retrieved SIF are latitudinal dependent and time-of-overpass dependent. Daily integrated SIF estimation shows better correlation with daily GPP observations. Chapter 4 compares different vegetation indices with SIF to get an empirical estimation of fraction of photosynthetically active radiation by chlorophyll (fPARchl). By comparing this fPARchl estimation with ecosystem light use efficiency retrieved from eddy covariance flux towers, the light use efficiency based on light absorption by chlorophyll shows narrower range of variation that can be used for improving production efficiency models. Chapter 5 investigates the drought impact on GPP through the change of vegetation canopy optical properties and physiological processes. Forest and non-forest ecosystems shows very different responses in terms of these two limitation and need to be treated differently in GPP modelling. Chapter 6 applies the improved VPM to North America and compared with SIF retrieval from GOME-2 instrument. The comparison shows good consistency between GPP and SIF in both spatial and seasonal variation. Chapter 7 uses an ensemble of GPP product to explore the cause of hot spots of GPP interannual variability. GPP in semiarid regions are strongly coupled with evapotranspiration and show high sensitivity to interannual variation of precipitation. The results demonstrate the importance of precipitation in regional carbon flux variability
    corecore