57,207 research outputs found

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically

    A system to support dissemination of knowledge and sharing of experiences in the working environment

    Get PDF
    In the information era enterprises strive to be productive and efficient. One feature of this goal is to engage their employees in education programmes, help them gain new experiences and knowledge and adapt to an ever-changing working environment. Such programmes require thorough design in order to achieve satisfactory results. Lately, enterprises recognising the role technology can play in the education of their employees, have adopted systems that supplement the traditional educational model with mechanisms that enable the sharing of experiences and knowledge [5]. In this paper we describe an architecture and a system prototype that allows users to search easily for information, interact with colleagues and share experiences, to compose and disseminate best practices and knowledge. The design of this system is based on insights gained from the operation of the Greek Taxation System

    Specification of vertical semantic consistency rules of UML class diagram refinement using logical approach

    Get PDF
    Unified Modelling Language (UML) is the most popular modelling language use for software design in software development industries with a class diagram being the most frequently use diagram. Despite the popularity of UML, it is being affected by inconsistency problems of its diagrams at the same or different abstraction levels. Inconsistency in UML is mostly caused by existence of various views on the same system and sometimes leads to potentially conflicting system specifications. In general, syntactic consistency can be automatically checked and therefore is supported by current UML Computer-aided Software Engineering (CASE) tools. Semantic consistency problems, unlike syntactic consistency problems, there exists no specific method for specifying semantic consistency rules and constraints. Therefore, this research has specified twenty-four abstraction rules of classā€Ÿs relation semantic among any three related classes of a refined class diagram to semantically equivalent relations of two of the classes using a logical approach. This research has also formalized three vertical semantic consistency rules of a class diagram refinement identified by previous researchers using a logical approach and a set of formalized abstraction rules. The results were successfully evaluated using hotel management system and passenger list system case studies and were found to be reliable and efficient

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Proximal business intelligence on the semantic web

    Get PDF
    This is the post-print version of this article. The official version can be accessed from the link below - Copyright @ 2010 Springer.Ubiquitous information systems (UBIS) extend current Information System thinking to explicitly differentiate technology between devices and software components with relation to people and process. Adapting business data and management information to support specific user actions in context is an ongoing topic of research. Approaches typically focus on providing mechanisms to improve specific information access and transcoding but not on how the information can be accessed in a mobile, dynamic and ad-hoc manner. Although web ontology has been used to facilitate the loading of data warehouses, less research has been carried out on ontology based mobile reporting. This paper explores how business data can be modeled and accessed using the web ontology language and then re-used to provide the invisibility of pervasive access; uncovering more effective architectural models for adaptive information system strategies of this type. This exploratory work is guided in part by a vision of business intelligence that is highly distributed, mobile and fluid, adapting to sensory understanding of the underlying environment in which it operates. A proof-of concept mobile and ambient data access architecture is developed in order to further test the viability of such an approach. The paper concludes with an ontology engineering framework for systems of this type ā€“ named UBIS-ONTO

    Km4City Ontology Building vs Data Harvesting and Cleaning for Smart-city Services

    Get PDF
    Presently, a very large number of public and private data sets are available from local governments. In most cases, they are not semantically interoperable and a huge human effort would be needed to create integrated ontologies and knowledge base for smart city. Smart City ontology is not yet standardized, and a lot of research work is needed to identify models that can easily support the data reconciliation, the management of the complexity, to allow the data reasoning. In this paper, a system for data ingestion and reconciliation of smart cities related aspects as road graph, services available on the roads, traffic sensors etc., is proposed. The system allows managing a big data volume of data coming from a variety of sources considering both static and dynamic data. These data are mapped to a smart-city ontology, called KM4City (Knowledge Model for City), and stored into an RDF-Store where they are available for applications via SPARQL queries to provide new services to the users via specific applications of public administration and enterprises. The paper presents the process adopted to produce the ontology and the big data architecture for the knowledge base feeding on the basis of open and private data, and the mechanisms adopted for the data verification, reconciliation and validation. Some examples about the possible usage of the coherent big data knowledge base produced are also offered and are accessible from the RDF-Store and related services. The article also presented the work performed about reconciliation algorithms and their comparative assessment and selection
    • ā€¦
    corecore