742 research outputs found

    Collaborative gold mining algorithm : an optimization algorithm based on the natural gold mining process

    Get PDF
    In optimization algorithms, there are some challenges, including lack of optimal solution, slow convergence, lack of scalability, partial search space, and high computational demand. Inspired by the process of gold exploration and exploitation, we propose a new meta-heuristic and stochastic optimization algorithm called collaborative gold mining (CGM). The proposed algorithm has several iterations; in each of these, the center of mass of points with the highest amount of gold is calculated for each miner (agent), with this process continuing until the point with the highest amount of gold or when the optimal solution is found. In an n-dimensional geographic space, the CGM algorithm can locate the best position with the highest amount of gold in the entire search space by collaborating with several gold miners. The proposed CGM algorithm was applied to solve several continuous mathematical functions and several practical problems, namely, the optimal placement of resources, the traveling salesman problem, and bag-of-tasks scheduling. In order to evaluate its efficiency, the CGM results were compared with the outputs of some famous optimization algorithms, such as the genetic algorithm, simulated annealing, particle swarm optimization, and invasive weed optimization. In addition to determining the optimal solutions for all the evaluated problems, the experimental results show that the CGM mechanism has an acceptable performance in terms of optimal solution, convergence, scalability, search space, and computational demand for solving continuous and discrete problems

    Integrating forecasting in metaheuristic methods to solve dynamic routing problems: evidence from the logistic processes of tuna vessels

    Get PDF
    The multiple Traveling Salesman Problem (mTSP) is a widespread phenomenon in real-life scenarios, and in fact it has been addressed from multiple perspectives in recent decades. However, mTSP in dynamic circumstances entails a greater complexity that recent approaches are still trying to grasp. Beyond time windows, capacity and other parameters that characterize the dynamics of each scenario, moving targets is one of the underdeveloped issues in the field of mTSP. The approach of this paper harnesses a simple prediction method to prove that integrating forecasting within a metaheuristic evolutionary-based method, such as genetic algorithms, can yield better results in a dynamic scenario than their simple non-predictive version. Real data is used from the retrieval of Fish Aggregating Devices (FADs) by tuna vessels in the Indian Ocean. Based on historical data registered by the GPS system of the buoys attached to the devices, their trajectory is firstly forecast to feed subsequently the functioning of a genetic algorithm that searches for the optimal route of tuna vessels in terms of total distance traveled. Thus, although valid for static cases and for the Vehicle Routing Problem (VRP), the main contribution of this method over existing literature lies in its application as a global search method to solve the multiple TSP with moving targets in many dynamic real-life optimization problems.Ministerio de Economía y Competitividad | Ref. ECO2016-76625-RXunta de Galicia | Ref. GRC2014/02

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    A case study of two-echelon multi-depot vehicle routing problem

    Get PDF
    The Vehicle Routing Problem (VRP) is a classic combinatorial optimization problem and a topic still studied for practical applications. Current research focuses on single echelon distribution systems such as distribution centers serving customers. However, in typical distribution, goods flows among regional distribution centers, local warehouses and customers, defined as a two-echelon network. The two-echelon multiple depot VRP problem is documented and applied to two stages illustrated by a small scale computational example. In the first stage, the simulated annealing algorithm is employed to determine the routes between local warehouses and final customers. For the second stage, trial-and-error is applied to obtain the number and location of regional distribution centers and the routes between regional distribution centers and local warehouses. Matlab is utilized to simulate annealing iterations and cost functions are analyzed. The convergence tendency of simulated annealing is depicted in figures by Matlab coding. Contributions include demonstration between the SA algorithm and a specific combinatorial optimization problem, and an application of the algorithm

    Comparative Research on Robot Path Planning Based on GA-ACA and ACA-GA

    Get PDF
    The path planning for mobile robots is one of the core contents in the field of robotics research with complex, restrictive and nonlinear characteristics. It consists of automatically determining a path from an initial position of the robot to its final position. Due to classic approaches have several drawbacks, evolutionary methods such as Ant Colony Optimization Algorithm (ACA) and Genetic Algorithm (GA) are employed to solve the path planning efficiently

    Optimized profile extraction and three dimensional reconstruction techniques applied to bubble shapes

    Get PDF
    In order to predict the behavior of bubbly flows, it is necessary to know the three dimensional profiles of the bubbles present in the flow. With advancements in the field of flow visualization, accurate reconstruction of the bubble shape has become necessary. The PIV and the SIV techniques, used to acquire images of particles and bubbles, have been found to be extremely useful in this regard. The study, development, implementation, applications and limitations of a unique reconstruction technique applied to various regular and irregular bubble shapes, using the two orthogonal projections of the three-dimensional bubble profiles as captured by the SIV cameras are presented here. The technique is a blend of neural networks, combinatorial optimization and advanced computer aided design methods. The technique involves the robustness and ruggedness of the neural network approach and the flexibility and reliability of advanced computer aided design methods. The technique uses a well-known problem in neural networks and combinatorial optimization known as the Traveling Salesman Problem approach to identify the bubble boundaries on the images. An optimization solution technique known as the Simulated Annealing technique is employed to solve the Traveling Salesman Problem and obtain the bubble profiles. These results are employed to reconstruct bubble shapes using NURBS computer aided design software. Two main applications of this technique are demonstrated and the results are found to be promising. The first application included the calculation of the void fraction at a particular depth of the channel/ pipe and at a particular radius of the channel. The second application was Lagrangian tracking of bubbles, wherein the centroids of the bubbles were tracked between image frames to determine the linear and transverse velocities of the bubbles. This technique has shown scope for development including the development as integrated bubble surface reconstruction software and advanced modifications at various levels for efficient and accurate reconstruction

    Industry 4.0 in civil engineering: delivery route optimization with smart roads

    Get PDF
    • …
    corecore