8,854 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency

    Get PDF
    In this paper, we address the problem of asset performance monitoring, with the intention of both detecting any potential reliability problem and predicting any loss of energy consumption e ciency. This is an important concern for many industries and utilities with very intensive capitalization in very long-lasting assets. To overcome this problem, in this paper we propose an approach to combine an Artificial Neural Network (ANN) with Data Mining (DM) tools, specifically with Association Rule (AR) Mining. The combination of these two techniques can now be done using software which can handle large volumes of data (big data), but the process still needs to ensure that the required amount of data will be available during the assets’ life cycle and that its quality is acceptable. The combination of these two techniques in the proposed sequence di ers from previous works found in the literature, giving researchers new options to face the problem. Practical implementation of the proposed approach may lead to novel predictive maintenance models (emerging predictive analytics) that may detect with unprecedented precision any asset’s lack of performance and help manage assets’ O&M accordingly. The approach is illustrated using specific examples where asset performance monitoring is rather complex under normal operational conditions.Ministerio de Economía y Competitividad DPI2015-70842-

    Integrating IoT Analytics into Marketing Decision Making: A Smart Data-Driven Approach

    Get PDF
    With the advent of the Internet of Things (IoT), businesses have gained access to vast amounts of data generated by interconnected devices. Leveraging IoT analytics and marketing intelligence, organizations can extract valuable insights from this data to enhance decision-making processes. This paper presents a comprehensive methodology for data-driven decision-making in the context of IoT analytics and marketing intelligence. A real-time example is used to illustrate the application of this methodology, followed by an inference and discussion of the results. The rise of IoT has enabled real-time data collection from a wide array of interconnected devices, offering unprecedented opportunities for businesses to gain actionable insights. This paper focuses on the intersection of IoT analytics and marketing intelligence, exploring how data-driven decision-making can empower organizations to optimize their marketing strategies, customer experiences, and overall business performance

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version

    Digitalisation of Development and Supply Networks: Sequential and Platform-Driven Innovations

    Get PDF
    We draw from an eight-year dataset of 98 organisational entities involved in pre-competitive innovation networks across the UK pharmaceutical sector. These data map into three networks that are representative of: (i) a product development-led sequential pathway that begins with digitalised product development, followed by digitalisation of supply networks, (ii) a supply network-led sequential pathway that starts with digitalised supply networks, followed by digitalisation of product development, and (iii) a parallel — platform-driven — pathway that enables simultaneous digitalisation of development, production, and supply networks. We draw upon extant literature to assess these network structures along three dimensions — strategic intent, the integrative roles of nodes with high centrality, and innovation performance. We conduct within-case and cross-case analyses to postulate 10 research propositions that compare and contrast modalities for sequential and platform-based digitalisation involving collaborative innovation networks. With sequential development, our propositions are congruent with conventional pathways for mitigating innovation risks through modular moves. On the other hand, we posit that platform-based design rules, rather than modular moves, mitigate the risks for parallel development pathways, and lead to novel development and delivery mechanisms
    corecore