531 research outputs found

    WLAN-Based Pedestrian Tracking Using Particle Filters and Low-Cost MEMS Sensors

    Get PDF
    Indoor positioning systems based on Wireless LAN (WLAN) are being widely investigated in academia and industry. Meanwhile, the emerging low-cost MEMS sensors can also be used as another independent positioning source. In this paper, we propose a pedestrian tracking framework based on particle filters, which extends the typical WLAN-based indoor positioning systems by integrating low-cost MEMS accelerometer and map information. Our simulation and real world experiments indicate a remarkable performance improvement by using this fusion framework

    Cooperative Relative Positioning of Mobile Users by Fusing IMU Inertial and UWB Ranging Information

    Full text link
    Relative positioning between multiple mobile users is essential for many applications, such as search and rescue in disaster areas or human social interaction. Inertial-measurement unit (IMU) is promising to determine the change of position over short periods of time, but it is very sensitive to error accumulation over long term run. By equipping the mobile users with ranging unit, e.g. ultra-wideband (UWB), it is possible to achieve accurate relative positioning by trilateration-based approaches. As compared to vision or laser-based sensors, the UWB does not need to be with in line-of-sight and provides accurate distance estimation. However, UWB does not provide any bearing information and the communication range is limited, thus UWB alone cannot determine the user location without any ambiguity. In this paper, we propose an approach to combine IMU inertial and UWB ranging measurement for relative positioning between multiple mobile users without the knowledge of the infrastructure. We incorporate the UWB and the IMU measurement into a probabilistic-based framework, which allows to cooperatively position a group of mobile users and recover from positioning failures. We have conducted extensive experiments to demonstrate the benefits of incorporating IMU inertial and UWB ranging measurements.Comment: accepted by ICRA 201

    Information Fusion for 5G IoT: An Improved 3D Localisation Approach Using K-DNN and Multi-Layered Hybrid Radiomap

    Get PDF
    Indoor positioning is a core enabler for various 5G identity and context-aware applications requiring precise and real-time simultaneous localisation and mapping (SLAM). In this work, we propose a K-nearest neighbours and deep neural network (K-DNN) algorithm to improve 3D indoor positioning. Our implementation uses a novel data-augmentation concept for the received signal strength (RSS)-based fingerprint technique to produce a 3D fused hybrid. In the offline phase, a machine learning (ML) approach is used to train a model on a radiomap dataset that is collected during the offline phase. The proposed algorithm is implemented on the constructed hybrid multi-layered radiomap to improve the 3D localisation accuracy. In our implementation, the proposed approach is based on the fusion of the prominent 5G IoT signals of Bluetooth Low Energy (BLE) and the ubiquitous WLAN. As a result, we achieved a 91% classification accuracy in 1D and a submeter accuracy in 2D

    Localisation en intérieur et gestion de la mobilité dans les réseaux sans fils hétérogènes émergents

    Get PDF
    Au cours des dernières décennies, nous avons été témoins d'une évolution considérable dans l'informatique mobile, réseau sans fil et des appareils portatifs. Dans les réseaux de communication à venir, les utilisateurs devraient être encore plus mobiles exigeant une connectivité omniprésente à différentes applications qui seront de préférence au courant de leur contexte. Certes, les informations de localisation dans le cadre de leur contexte est d'une importance primordiale à la fois la demande et les perspectives du réseau. Depuis l'application ou de point de vue utilisateur, la fourniture de services peut mettre à jour si l'adaptation au contexte de l'utilisateur est activée. Du point de vue du réseau, des fonctionnalités telles que le routage, la gestion de transfert, l'allocation des ressources et d'autres peuvent également bénéficier si l'emplacement de l'utilisateur peuvent être suivis ou même prédit. Dans ce contexte, nous nous concentrons notre attention sur la localisation à l'intérieur et de la prévision transfert qui sont des composants indispensables à la réussite ultime de l'ère de la communication omniprésente envisagé. Alors que les systèmes de positionnement en plein air ont déjà prouvé leur potentiel dans un large éventail d'applications commerciales, le chemin vers un système de localisation à l'intérieur de succès est reconnu pour être beaucoup plus difficile, principalement en raison des caractéristiques difficiles à l'intérieur et l'exigence d'une plus grande précision. De même, la gestion de transfert dans le futur des réseaux hétérogènes sans fil est beaucoup plus difficile que dans les réseaux traditionnels homogènes. Régimes de procédure de transfert doit être sans faille pour la réunion strictes de qualité de service (QoS) des applications futures et fonctionnel malgré la diversité des caractéristiques de fonctionnement des différentes technologies. En outre, les décisions transfert devraient être suffisamment souples pour tenir compte des préférences utilisateur d'un large éventail de critères proposés par toutes les technologies. L'objectif principal de cette thèse est de mettre au point précis, l'heure et l'emplacement de puissance et de systèmes efficaces de gestion de transfert afin de mieux satisfaire applications sensibles au contexte et mobiles. Pour obtenir une localisation à l'intérieur, le potentiel de réseau local sans fil (WLAN) et Radio Frequency Identification (RFID) que l'emplacement autonome technologies de détection sont d'abord étudiés par des essais plusieurs algorithmes et paramètres dans un banc d'essai expérimental réel ou par de nombreuses simulations, alors que leurs lacunes sont également été identifiés. Leur intégration dans une architecture commune est alors proposée afin de combiner leurs principaux avantages et surmonter leurs limitations. La supériorité des performances du système de synergie sur le stand alone homologues est validée par une analyse approfondie. En ce qui concerne la tâche de gestion transfert, nous repérer que la sensibilité au contexte peut aussi améliorer la fonctionnalité du réseau. En conséquence, deux de tels systèmes qui utilisent l'information obtenue à partir des systèmes de localisation sont proposées. Le premier schéma repose sur un déploiement tag RFID, comme notre architecture de positionnement RFID, et en suivant la scène WLAN analyse du concept de positionnement, prédit l'emplacement réseau de la prochaine couche, c'est à dire le prochain point de fixation sur le réseau. Le second régime repose sur une approche intégrée RFID et sans fil de capteur / actionneur Network (WSAN) de déploiement pour la localisation des utilisateurs physiques et par la suite pour prédire la prochaine leur point de transfert à deux couches de liaison et le réseau. Etre indépendant de la technologie d'accès sans fil principe sous-jacent, les deux régimes peuvent être facilement mises en œuvre dans des réseaux hétérogènes [...]Over the last few decades, we have been witnessing a tremendous evolution in mobile computing, wireless networking and hand-held devices. In the future communication networks, users are anticipated to become even more mobile demanding for ubiquitous connectivity to different applications which will be preferably aware of their context. Admittedly, location information as part of their context is of paramount importance from both application and network perspectives. From application or user point of view, service provision can upgrade if adaptation to the user's context is enabled. From network point of view, functionalities such as routing, handoff management, resource allocation and others can also benefit if user's location can be tracked or even predicted. Within this context, we focus our attention on indoor localization and handoff prediction which are indispensable components towards the ultimate success of the envisioned pervasive communication era. While outdoor positioning systems have already proven their potential in a wide range of commercial applications, the path towards a successful indoor location system is recognized to be much more difficult, mainly due to the harsh indoor characteristics and requirement for higher accuracy. Similarly, handoff management in the future heterogeneous wireless networks is much more challenging than in traditional homogeneous networks. Handoff schemes must be seamless for meeting strict Quality of Service (QoS) requirements of the future applications and functional despite the diversity of operation features of the different technologies. In addition, handoff decisions should be flexible enough to accommodate user preferences from a wide range of criteria offered by all technologies. The main objective of this thesis is to devise accurate, time and power efficient location and handoff management systems in order to satisfy better context-aware and mobile applications. For indoor localization, the potential of Wireless Local Area Network (WLAN) and Radio Frequency Identification (RFID) technologies as standalone location sensing technologies are first studied by testing several algorithms and metrics in a real experimental testbed or by extensive simulations, while their shortcomings are also identified. Their integration in a common architecture is then proposed in order to combine their key benefits and overcome their limitations. The performance superiority of the synergetic system over the stand alone counterparts is validated via extensive analysis. Regarding the handoff management task, we pinpoint that context awareness can also enhance the network functionality. Consequently, two such schemes which utilize information obtained from localization systems are proposed. The first scheme relies on a RFID tag deployment, alike our RFID positioning architecture, and by following the WLAN scene analysis positioning concept, predicts the next network layer location, i.e. the next point of attachment to the network. The second scheme relies on an integrated RFID and Wireless Sensor/Actuator Network (WSAN) deployment for tracking the users' physical location and subsequently for predicting next their handoff point at both link and network layers. Being independent of the underlying principle wireless access technology, both schemes can be easily implemented in heterogeneous networks. Performance evaluation results demonstrate the advantages of the proposed schemes over the standard protocols regarding prediction accuracy, time latency and energy savingsEVRY-INT (912282302) / SudocSudocFranceF
    corecore