1,657 research outputs found

    The Internet-of-Things Meets Business Process Management: Mutual Benefits and Challenges

    Get PDF
    The Internet of Things (IoT) refers to a network of connected devices collecting and exchanging data over the Internet. These things can be artificial or natural, and interact as autonomous agents forming a complex system. In turn, Business Process Management (BPM) was established to analyze, discover, design, implement, execute, monitor and evolve collaborative business processes within and across organizations. While the IoT and BPM have been regarded as separate topics in research and practice, we strongly believe that the management of IoT applications will strongly benefit from BPM concepts, methods and technologies on the one hand; on the other one, the IoT poses challenges that will require enhancements and extensions of the current state-of-the-art in the BPM field. In this paper, we question to what extent these two paradigms can be combined and we discuss the emerging challenges

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    How the internet of things technology enhances emergency response operations

    Get PDF
    The Internet of Things (IoT) is a novel paradigm that connects the pervasive presence around us of a variety of things or objects to the Internet by using wireless/wired technologies to reach desired goals. Since the concept of the IoT was introduced in 2005, we see the deployment of a new generation of networked smart objects with communication, sensory and action capabilities for numerous applications, mainly in global supply chain management, environment monitoring and other non-stress environments. This paper introduces the IoT technology for use in the emergency management community. Considering the information required for supporting three sequential and distinct rhythms in emergency response operations: mobilization rhythm, preliminary situation assessment rhythm, and intervention rhythm, the paper proposes a modified task-technology fit approach that is used to investigate how the IoT technology can be incorporated into the three rhythms and enhance emergency response operations. The findings from our research support our two hypotheses: H1: IoT technology fits the identified information requirements; and H2: IoT technology provides added value to emergency response operations in terms of obtaining efficient cooperation, accurate situational awareness, and complete visibility of resources. © 2012 Elsevier Inc

    "Tap it again, Sam": Harmonizing the frontiers between digital and real worlds in education

    Get PDF
    Lifelong leaners are intrinsically motivated to embed learning activities into daily life activities. Finding a suitable combination of the two is not trivial since lifelong learners have to face conflicts of time and location. Hence, lifelong learners normally build personal learning ecologies in those moments they set aside to learn making use of their available resources. On the other hand, the advent of Near Field Communication (NFC) technology facilitates the harmonization in the interactions between the digital world and daily physical spaces. Likewise, NFC enabled phones are becoming more and more popular. The contribution of this manuscript is threefold: first, scientific literature where NFC has been used with a direct or indirect purpose to learn is reviewed, and potential uses for lifelong learners are identified; based on these findings the Ecology of Resources for Lifelong Learning is presented as suitable setup for the scaffolding of learning activities with NFC augmented physical spaces; finally, this ecology is piloted and different learning scenarios are proposed for further extension

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application

    Smart manufacturing: role of Internet of Things in process optimization

    Get PDF
    This research is primarily focused on process optimization in manufacturing field in business-to-business context. The study is an effort to point out the issues manufacturers face at their shop floor and it provides solutions for dealing with those issues. During the last decade the Internet of Things (IoT) has gained a lot of attention from both academia and practitioners. IoT emphasizes on the importance of physical objects transferring information by using both software and the Internet. Based on the global trends, nowadays, there is a clear requirement for companies to focus on how they can implement IoT in order to facilitate their businesses and create new business and market opportunities. IoT is able to connect various things and objects around us which are able to interact with each other. In other words, IoT technologies not only connect a particular industrial system or supply chain, but also connects stakeholders and end-customers. The goal of the thesis is to discuss IoT technologies and elaborate on how they are implemented in manufacturing processes. One empirical case study on IoT applications in shop floors and production lines carried out. Two cases were selected based on being a pioneer in implementing IoT technologies into manufacturing and highly optimized production at targeted factories. The cases represent next generation of smart factories which IoT technologies and in particular RFID solutions play an important role. A qualitative document analysis was conducted. The topic of this research is relatively new and therefore majority of references used for this paper are from 2014 onwards. Data were collected from public, non-confidential information sources including press releases, newspapers, articles and journals. The research approach was primarily descriptive with the focus on differences between previous production optimization technologies and IoT applications in use today. The results of thesis demonstrates that IoT technologies bring transparency, traceability, adaptability, scalability and flexibility to the system. Therefore, the adoption of IoT has quite a few potential benefits, including improvement in cost and risk reduction, operational processes and value creation. This research also shows that using IoT technologies for their benefits is not an easy task for enterprises. Companies face many challenges on the way including layout changes in the factory’s shop floor, changes in the design of the products, security concerns and consumer privacy. Moreover, since the IoT is a recent development, different aspects of the IoT such as economical, managerial and industrial aspects need to be studied. And this makes companies hesitant to make decisions regarding the adoption of IoT

    Internet of things: Vision, applications and research challenges

    Get PDF
    The term “Internet-of-Things” is used as an umbrella keyword for covering various aspects related to the extension of the Internet and the Web into the physical realm, by means of the widespread deployment of spatially distributed devices with embedded identification, sensing and/or actuation capabilities. Internet-of-Things envisions a future in which digital and physical entities can be linked, by means of appropriate information and communication technologies, to enable a whole new class of applications and services. In this article, we present a survey of technologies, applications and research challenges for Internet-of-Things
    • …
    corecore