4 research outputs found

    Adaptive object management for distributed systems

    Get PDF
    This thesis describes an architecture supporting the management of pluggable software components and evaluates it against the requirement for an enterprise integration platform for the manufacturing and petrochemical industries. In a distributed environment, we need mechanisms to manage objects and their interactions. At the least, we must be able to create objects in different processes on different nodes; we must be able to link them together so that they can pass messages to each other across the network; and we must deliver their messages in a timely and reliable manner. Object based environments which support these services already exist, for example ANSAware(ANSA, 1989), DEC's Objectbroker(ACA,1992), Iona's Orbix(Orbix,1994)Yet such environments provide limited support for composing applications from pluggable components. Pluggability is the ability to install and configure a component into an environment dynamically when the component is used, without specifying static dependencies between components when they are produced. Pluggability is supported to a degree by dynamic binding. Components may be programmed to import references to other components and to explore their interfaces at runtime, without using static type dependencies. Yet thus overloads the component with the responsibility to explore bindings. What is still generally missing is an efficient general-purpose binding model for managing bindings between independently produced components. In addition, existing environments provide no clear strategy for dealing with fine grained objects. The overhead of runtime binding and remote messaging will severely reduce performance where there are a lot of objects with complex patterns of interaction. We need an adaptive approach to managing configurations of pluggable components according to the needs and constraints of the environment. Management is made difficult by embedding bindings in component implementations and by relying on strong typing as the only means of verifying and validating bindings. To solve these problems we have built a set of configuration tools on top of an existing distributed support environment. Specification tools facilitate the construction of independent pluggable components. Visual composition tools facilitate the configuration of components into applications and the verification of composite behaviours. A configuration model is constructed which maintains the environmental state. Adaptive management is made possible by changing the management policy according to this state. Such policy changes affect the location of objects, their bindings, and the choice of messaging system

    Contributions to Statistical Model Checking

    Get PDF
    Statistical Model Checking (SMC) is a powerful and widely used approach that consists in estimating the probability for a system to satisfy a temporal property. This is done by monitoring a finite number of executions of the system, and then extrapolating the result by using statistics. The answer is correct up to some confidence that can be parameterized by the user. It is known that SMC mitigates the state-space explosion problem and allows us to handle requirements that cannot be expressed in classical temporal logics. The approach has been implemented in several toolsets, and successfully applied in a wide range of diverse areas such as systems biology, robotic, or automotive. Unfortunately, SMC is not a panacea and many important classes of systems and properties are still out of its scope. Moreover, In addition, SMC still indirectly suffers from an explosion linked to the number of simulations needed to converge when estimating small probabilities. Finally,the approach has not yet been lifted to a professional toolset directly usable by industry people.In this thesis we propose several contributions to increase the efficiency of SMC and to wider its applicability to a larger class of systems. We show how to extend the applicability of SMC to estimate the probability of rare-events. The probability of such events is so small that classical estimators such as Monte Carlo would almost always estimate it to be null. We then show how to apply SMC to those systems that combine both non-deterministic and stochastic aspects. Contrary to existing work, we do not use a learning-based approach for the non-deterministic aspects, butrather exploit a smart sampling strategy. We then show that SMC can be extended to a new class of problems. More precisely, we consider the problem of detecting probability changes at runtime. We solve this problem by exploiting an algorithm coming from the signal processing area. We also propose an extension of SMC to real-time stochastic system. We provide a stochastic semantic for such systems, and show how to exploit it in a simulation-based approach. Finally, we also consider an extension of the approach for Systems of Systems.Our results have been implemented in Plasma Lab, a powerful but flexible toolset. The thesis illustrates the efficiency of this tool on several case studies going from classical verification to more quixotic applications such as robotic

    Explicitly Integrated Architecture - An Approach for Integrating Software Architecture Model Information with Program Code

    Get PDF
    Software-Architekturspezifikationen und -Implementierungen sind zwei Sichtweisen auf Softwarearchitektur. Sie beschreiben gemeinsame Aspekte, wie z.B. die Existenz und Verbindung von Komponenten. Die Spezifikation fügt Informationen zum Design, zur Kommunikation und zur Analyse hinzu. Die Implementierung beschreibt stattdessen zusätzlich Details für ein ausführbares System. Die Konsistenz zwischen diesen Darstellungen manuell zu verwalten, ist schwierig und fehleranfällig. Diese Arbeit stellt einen Ansatz vor, der Informationen der Architekturspezifikation vollständig in die Implementierung integriert, sodass die Spezifikation als eigenständiges Artefakt nicht mehr notwendig ist. Das Tool Codeling extrahiert die integrierte Architekturspezifikation in unterschiedlichen Sprachen aus dem Code und propagiert Änderungen in dieser Spezifikation automatisch an den Code zurück.Specifications and implementations are both viewpoints upon software architecture. Besides common aspects, the specification adds information for design, communication, or analysis, while the implementation adds details for an executable system instead. Managing the consistency between these representations manually is difficult and error-prone. This thesis presents an approach, that completely integrates architecture specifications with the implementation, so that separate specification artifacts are not necessary anymore. The tool Codeling extracts integrated architecture specifications in multiple languages from code, and automatically propagates changes in these specifications back to the code

    Satellite Communications

    Get PDF
    This study is motivated by the need to give the reader a broad view of the developments, key concepts, and technologies related to information society evolution, with a focus on the wireless communications and geoinformation technologies and their role in the environment. Giving perspective, it aims at assisting people active in the industry, the public sector, and Earth science fields as well, by providing a base for their continued work and thinking
    corecore