39,282 research outputs found

    The Adaptive Gain Integrating Pixel Detector at the European XFEL

    Full text link
    The Adaptive Gain Integrating Pixel Detector (AGIPD) is an x-ray imager, custom designed for the European x-ray Free-Electron Laser (XFEL). It is a fast, low noise integrating detector, with an adaptive gain amplifier per pixel. This has an equivalent noise of less than 1 keV when detecting single photons and, when switched into another gain state, a dynamic range of more than 104^4 photons of 12 keV. In burst mode the system is able to store 352 images while running at up to 6.5 MHz, which is compatible with the 4.5 MHz frame rate at the European XFEL. The AGIPD system was installed and commissioned in August 2017, and successfully used for the first experiments at the Single Particles, Clusters and Biomolecules (SPB) experimental station at the European XFEL since September 2017. This paper describes the principal components and performance parameters of the system.Comment: revised version after peer revie

    Assessment on the Efficiency of an Active Solar Thermal Facade: Study of the Effect of Dynamic Parameters and Experimental Analysis When Coupled/Uncoupled to a Heat Pump

    Get PDF
    The building sector presents poor performance in terms of energy efficiency and is looking for effective alternatives aimed at reducing the use of fossil fuels. The facade is a key element able to harness renewable energy as an Active Solar Thermal Facade (ASTF). The main purpose of this study is the assessment of a novel design concept based on a steel sandwich panel technology. The performance of the active system will be first addressed by a parametric study in order to analyze its behavior and secondly, by describing a real case based on an experimental test by connecting the active panels to a heat pump. The study shows the impact of solar irradiation and mass flow on the thermal jump achieved, while ambient and fluid inlet temperatures are the most influencing parameters in the efficiency of the facade. When coupled to the heat pump, results from a measurement campaign demonstrate a remarkable improvement in the performance of the ASTF. The results presented provide significant proof about the benefits of a synergetic combination of both technologies—solar facades and heat pumps—as efficient alternatives for the building sector, aiming to improve energy efficiency as well as reduce their dependence on non-renewable sources.This research was partially funded by the Basque Government through IT781-13 and IT1314-19 research groups and by the University of the Basque Country UPV/EHU through PES17/25. Additionally, TECNALIA Research & Innovation supported the research activities research through a cooperation agreement (PT10516) with UPV/EHU

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft

    A combined optical, thermal and electrical performance model of a Building Integrated Photovoltaic/Thermal Concentrator (BIPVTC)

    Get PDF
    The electrical output of concentrating photovoltaic devices is significantly affected by the temperature of the photovoltaic cells. The ability to actively cool photovoltaic cells under concentrated radiation allows their electrical efficiency to be maintained particularly during periods of high solar radiation when concentration offers the maximum benefit. In this study, the design of a novel photovoltaic/thermal solar concentrator for building integration (BIPVTC) is discussed. The optical, thermal and electrical performance of the collector was theoretically modelled and validated with experimental data. The results show that BIPVTC offers improved electrical yields from both concentrating radiation onto the photovoltaic cells and also by actively cooling them

    A review of metal foam and metal matrix composites for heat exchangers and heat Sinks

    Get PDF
    Recent advances in manufacturing methods open the possibility for broader use of metal foams and metal matrix composites (MMCs) for heat exchangers, and these materials can have tailored material properties. Metal foams in particular combine a number of interesting properties from a heat exchanger's point of view. In this paper, the material properties of metal foams and MMCs are surveyed, and the current state of the art is reviewed for heat exchanger applications. Four different applications are considered: liquid-liquid, liquid-gas, and gas-gas heat exchangers and heat sinks. Manufacturing and implementation issues are identified and discussed, and it is concluded that these materials hold promise both for heat exchangers and heat sinks, but that some key issues still need to be solved before broad-scale application is possible
    • …
    corecore