159 research outputs found

    Phylodynamics of HIV-1 from a Phase III AIDS Vaccine Trial in Bangkok, Thailand

    Get PDF
    In 2003, a phase III placebo-controlled trial (VAX003) was completed in Bangkok, Thailand. Of the 2,546 individuals enrolled in the trial based on high risk for infection through injection drug use (IDU), we obtained clinical samples and HIV-1 sequence data (envelope glycoprotein gene gp120) from 215 individuals who became infected during the trial. Here, we used these data in combination with other publicly available gp120 sequences to perform a molecular surveillance and phylodynamic analysis of HIV-1 in Thailand.Phylogenetic and population genetic estimators were used to assess HIV-1 gp120 diversity as a function of vaccination treatment, viral load (VL) and CD4(+) counts, to identify transmission clusters and to investigate the timescale and demographics of HIV-1 in Thailand. Three HIV-1 subtypes were identified: CRF01_AE (85% of the infections), subtype B (13%) and CRF15_AE (2%). The Bangkok IDU cohort showed more gp120 diversity than other Asian IDU cohorts and similar diversity to that observed in sexually infected individuals. Moreover, significant differences (P<0.02) in genetic diversity were observed in CRF01_AE IDU with different VL and CD4(+) counts. No phylogenetic structure was detected regarding any of the epidemiological and clinical factors tested, although high proportions (35% to 50%) of early infections fell into clusters, which suggests that transmission chains associated with acute infection play a key role on HIV-1 spread among IDU. CRF01_AE was estimated to have emerged in Thailand in 1984.5 (1983-1986), 3-6 years before the first recognition of symptomatic patients (1989). The relative genetic diversity of the HIV-1 population has remained high despite decreasing prevalence rates since the mid 1990s.Our study and recent epidemiological reports indicate that HIV-1 is still a major threat in Thailand and suggest that HIV awareness and prevention needs to be strengthened to avoid AIDS resurgence

    Phylodynamics on local sexual contact networks

    Full text link

    Integrating viral RNA sequence and epidemiological data to define transmission patterns for respiratory syncytial virus

    Get PDF
    The analyses contained herein focus on making comparisons between model inferences obtained using different scales of pathogen identification, with a particular focus on respiratory syncytial virus (RSV). A significant proportion of lower respiratory tract infections in children has been attributed to infection by RSV and as such, there has been global interest in understanding its transmission characteristics in order to plan for effective control. Mathematical models have often been used to explore potential mechanisms that drive the patterns observed in data collected at different scales. Several models have been used to explore how immunity to RSV is acquired and maintained, vaccination strategies and potential drivers of seasonality. However, most of these models do not make a distinction between the two antigenically and genetically distinct RSV groups (RSV A and RSV B), neither do they consider its ecological environment, in particular, potential interactions between RSV and other viral pathogens. This thesis therefore presents work done aimed at understanding the transmission characteristics of viral respiratory pathogens spreading in a group of households using a dynamic model of transmission The data analysed is cohort data collected between December 2009 and June 2010 from 493 individual distributed across 47 households from a rural coastal community in Kenya. Individuals in the study had nasopharyngeal swab samples collected twice weekly irrespective of symptom status. Infecting viral pathogens were identified using RT-PCR resulting in the identification of 4 main pathogens: RSV, human coronavirus, rhinovirus and adenovirus. RSV and coronavirus were further classified according to genetically distinct subgroups. Some of the RSV samples were sequenced to obtain whole genome sequences (WGS) and further classified into genetic clades/clusters. I first conducted a review of methods to identify the best way to integrate socialtemporal data and WGS genetic data into a single modelling framework for RSV. Given that the social-temporal data and genetic data were available at different sampling densities, I decided to use a model that focused on the data with the highest density. The results in this thesis are thus presented in three main chapters; the first focuses on analysing social-temporal shedding patterns of RSV identified at the group level (i.e. distinguish between RSV A and RSV B); the second incorporates the available genetic data into the model used to analyse the social-temporal data (i.e. separating RSV-A into 5 clusters, and RSV-B into 7 clusters); the third is an analysis of the interaction of two pathogens, RSV and coronavirus, identified at two different scales. One of the main findings in this thesis is that the household setting plays an important role in the spread of RSV, a finding that is made clearer with added detail on pathogen type. In the case of the data analysed here, and the social structuring from which it was collected, RSV clades appeared to mimic household structure as such identification at this level did not drastically change the transmission characteristic observed with identification at the group level. However, the combination of epidemiological and genetic data elucidated transmission chains within the household enabling the identification of the sources of infant RSV infections. For this particular study, it was inferred that the sources of infant RSV infections were both in the same household as the infant and from external sources. Where infant infections occurred in the household, the source of infection was often a child between the ages of 2-13 years. It was inferred that previous infection with one RSV group type reduced susceptibility to re-infection by heterologous group type within the same epidemic. Interactions were also observed between RSV and human coronavirus groups. In particular, previous infection with RSV B was estimated to increase susceptibility to corona OC43 by 81% (95% CrI: 40%, 134%). Detailed data of infection events in individual hosts can provide a wealth of knowledge. The inferences made from this study should be explored at larger spatial and temporal scales to determine the population level impact, and hence public-health significance, of pathogen interactions, whether these interactions are between strains of the same pathogen of between different pathogens. In planning for, and assessing the impact of, an intervention against a particular pathogen, investigators should not ignore the preexisting ecological balance and should make efforts to understand how this will be disrupted by an intervention against one or more pathogens

    Exploring the phylodynamics, genetic reassortment and RNA secondary structure formation patterns of orthomyxoviruses by comparative sequence analysis

    Get PDF
    RNA viruses are among the most virulent microorganisms that threaten the health of humans and livestock. Among the most socio-economically important of the known RNA viruses are those found in the family Orthomyxovirus. In this era of rapid low-cost genome sequencing and advancements in computational biology techniques, many previously difficult research questions relating to the molecular epidemiology and evolutionary dynamics of these viruses can now be answered with ease. Using sequence data together with associated meta-data, in chapter two of this dissertation I tested the hypothesis that the Influenza A/H1N1 2009 pandemic virus was introduced multiple times into Africa, and subsequently dispersed heterogeneously across the continent. I further tested to what degree factors such as road distances and air travel distances impacted the observed pattern of spread of this virus in Africa using a generalised linear modelbased approach. The results suggested that their were multiple simultaneous introductions of 2009 pandemic A/H1N1 into Africa, and geographical distance and human mobility through air travel played an important role towards dissemination. In chapter three, I set out to test two hypotheses: (1) that there is no difference in the frequency of reassortments among the segments that constitute influenza virus genomes; and (2) that there is epochal temporal reassortment among influenza viruses and that all geographical regions are equally likely sources of epidemiologically important influenza virus reassortant lineages. The findings suggested that surface segments are more frequently exchanges than internal genes and that North America/Asia, Oceania, and Asia could be the most likely source locations for reassortant Influenza A, B and C virus lineages respectively. In chapter four of this thesis, I explored the formation of RNA secondary structures within the genomes of orthomyxoviruses belonging to five genera: Influenza A, B and C, Infectious Salmon Anaemia Virus and Thogotovirus using in silico RNA folding predictions and additional molecular evolution and phylogenetic tests to show that structured regions may be biologically functional. The presence of some conserved structures across the five genera is likely a reflection of the biological importance of these structures, warranting further investigation regarding their role in the evolution and possible development of antiviral resistance. The studies herein demonstrate that pathogen genomics-based analytical approaches are useful both for understanding the mechanisms that drive the evolution and spread of rapidly evolving viral pathogens such as orthomyxoviruses, and for illuminating how these approaches could be leveraged to improve the management of these pathogens

    Phylogenetic Studies of Transmission Dynamics in Generalized HIV Epidemics: An Essential Tool Where the Burden is Greatest?

    Get PDF
    Efficient and effective HIV prevention measures for generalized epidemics in sub-Saharan Africa have not yet been validated at the population-level. Design and impact evaluation of such measures requires fine-scale understanding of local HIV transmission dynamics. The novel tools of HIV phylogenetics and molecular epidemiology may elucidate these transmission dynamics. Such methods have been incorporated into studies of concentrated HIV epidemics to identify proximate and determinant traits associated with ongoing transmission. However, applying similar phylogenetic analyses to generalized epidemics, including the design and evaluation of prevention trials, presents additional challenges. Here we review the scope of these methods and present examples of their use in concentrated epidemics in the context of prevention. Next, we describe the current uses for phylogenetics in generalized epidemics, and discuss their promise for elucidating transmission patterns and informing prevention trials. Finally, we review logistic and technical challenges inherent to large-scale molecular epidemiological studies of generalized epidemics, and suggest potential solutions

    An Ecological and Conservation Perspective on Advances in the Applied Virology of Zoonoses

    Get PDF
    The aim of this manuscript is to describe how modern advances in our knowledge of viruses and viral evolution can be applied to the fields of disease ecology and conservation. We review recent progress in virology and provide examples of how it is informing both empirical research in field ecology and applied conservation. We include a discussion of needed breakthroughs and ways to bridge communication gaps between the field and the lab. In an effort to foster this interdisciplinary effort, we have also included a table that lists the definitions of key terms. The importance of understanding the dynamics of zoonotic pathogens in their reservoir hosts is emphasized as a tool to both assess risk factors for spillover and to test hypotheses related to treatment and/or intervention strategies. In conclusion, we highlight the need for smart surveillance, viral discovery efforts and predictive modeling. A shift towards a predictive approach is necessary in today’s globalized society because, as the 2009 H1N1 pandemic demonstrated, identification post-emergence is often too late to prevent global spread. Integrating molecular virology and ecological techniques will allow for earlier recognition of potentially dangerous pathogens, ideally before they jump from wildlife reservoirs into human or livestock populations and cause serious public health or conservation issues

    Landscape attributes governing local transmission of an endemic zoonosis: rabies virus in domestic dogs

    Get PDF
    Landscape heterogeneity plays an important role in disease spread and persistence, but quantifying landscape influences and their scale dependence is challenging. Studies have focused on how environmental features or global transport networks influence pathogen invasion and spread, but their influence on local transmission dynamics that underpin the persistence of endemic diseases remains unexplored. Bayesian phylogeographic frameworks that incorporate spatial heterogeneities are promising tools for analysing linked epidemiological, environmental and genetic data. Here, we extend these methodological approaches to decipher the relative contribu- tion and scale-dependent effects of landscape influences on the transmission of endemic rabies virus in Serengeti district, Tanzania (area ~4,900 km2). Utilizing detailed epidemiological data and 152 complete viral genomes collected between 2004 and 2013, we show that the localized presence of dogs but not their density is the most important determinant of diffusion, implying that culling will be ineffec- tive for rabies control. Rivers and roads acted as barriers and facilitators to viral spread, respectively, and vaccination impeded diffusion despite variable annual cov- erage. Notably, we found that landscape effects were scale-dependent: rivers were barriers and roads facilitators on larger scales, whereas the distribution of dogs was important for rabies dispersal across multiple scales. This nuanced understanding of the spatial processes that underpin rabies transmission can be exploited for targeted control at the scale where it will have the greatest impact. Moreover, this research demonstrates how current phylogeographic frameworks can be adapted to improve our understanding of endemic disease dynamics at different spatial scales

    Phylodynamic modelling of foot-and-mouth disease virus sequence data

    Get PDF
    The under-reporting of cases of infectious diseases is a substantial impediment to the control and management of infectious diseases in both epidemic and endemic contexts. Information about infectious disease dynamics can be recovered from sequence data using time-varying coalescent approaches, and phylodynamic models have been developed in order to reconstruct demographic changes of the numbers of infected hosts through time. In this study I have demonstrated the general concordance between empirically observed epidemiological incidence data and viral demography inferred through analysis of foot-and-mouth disease virus VP1 coding sequences belonging to the CATHAY topotype over large temporal and spatial scales. However a more precise and robust relationship between the effective population size
    • …
    corecore