513 research outputs found

    Don't Blame Distributional Semantics if it can't do Entailment

    Get PDF
    Distributional semantics has had enormous empirical success in Computational Linguistics and Cognitive Science in modeling various semantic phenomena, such as semantic similarity, and distributional models are widely used in state-of-the-art Natural Language Processing systems. However, the theoretical status of distributional semantics within a broader theory of language and cognition is still unclear: What does distributional semantics model? Can it be, on its own, a fully adequate model of the meanings of linguistic expressions? The standard answer is that distributional semantics is not fully adequate in this regard, because it falls short on some of the central aspects of formal semantic approaches: truth conditions, entailment, reference, and certain aspects of compositionality. We argue that this standard answer rests on a misconception: These aspects do not belong in a theory of expression meaning, they are instead aspects of speaker meaning, i.e., communicative intentions in a particular context. In a slogan: words do not refer, speakers do. Clearing this up enables us to argue that distributional semantics on its own is an adequate model of expression meaning. Our proposal sheds light on the role of distributional semantics in a broader theory of language and cognition, its relationship to formal semantics, and its place in computational models.Comment: To appear in Proceedings of the 13th International Conference on Computational Semantics (IWCS 2019), Gothenburg, Swede

    Common Sense or World Knowledge? Investigating Adapter-Based Knowledge Injection into Pretrained Transformers

    Full text link
    Following the major success of neural language models (LMs) such as BERT or GPT-2 on a variety of language understanding tasks, recent work focused on injecting (structured) knowledge from external resources into these models. While on the one hand, joint pretraining (i.e., training from scratch, adding objectives based on external knowledge to the primary LM objective) may be prohibitively computationally expensive, post-hoc fine-tuning on external knowledge, on the other hand, may lead to the catastrophic forgetting of distributional knowledge. In this work, we investigate models for complementing the distributional knowledge of BERT with conceptual knowledge from ConceptNet and its corresponding Open Mind Common Sense (OMCS) corpus, respectively, using adapter training. While overall results on the GLUE benchmark paint an inconclusive picture, a deeper analysis reveals that our adapter-based models substantially outperform BERT (up to 15-20 performance points) on inference tasks that require the type of conceptual knowledge explicitly present in ConceptNet and OMCS

    Distributional Measures of Semantic Distance: A Survey

    Full text link
    The ability to mimic human notions of semantic distance has widespread applications. Some measures rely only on raw text (distributional measures) and some rely on knowledge sources such as WordNet. Although extensive studies have been performed to compare WordNet-based measures with human judgment, the use of distributional measures as proxies to estimate semantic distance has received little attention. Even though they have traditionally performed poorly when compared to WordNet-based measures, they lay claim to certain uniquely attractive features, such as their applicability in resource-poor languages and their ability to mimic both semantic similarity and semantic relatedness. Therefore, this paper presents a detailed study of distributional measures. Particular attention is paid to flesh out the strengths and limitations of both WordNet-based and distributional measures, and how distributional measures of distance can be brought more in line with human notions of semantic distance. We conclude with a brief discussion of recent work on hybrid measures

    The CogALex-V Shared Task on the Corpus-Based Identification of Semantic Relations

    Get PDF
    The shared task of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V) aims at providing a common benchmark for testing current corpus-based methods for the identifica- tion of lexical semantic relations ( synonymy , antonymy , hypernymy , part-whole meronymy ) and at gaining a better understanding of their respective strengths and weaknesses. The shared task uses a challenging dataset extracted from EVALution 1.0 (Santus et al., 2015b), which contains word pairs holding the above-mentioned relations as well as semantically unrelated control items ( random ). The task is split into two subtasks: (i) identification of related word pairs vs. unre- lated ones; (ii) classification of the word pairs according to their semantic relation. This paper describes the subtasks, the dataset, the evaluation metrics, the seven participating systems and their results. The best performing system in subtask 1 is GHHH ( F 1 = 0 . 790 ), while the best system in subtask 2 is LexNet ( F 1 = 0 . 445 ). The dataset and the task description are available at https://sites.google.com/site/cogalex2016/home/shared-task

    TiFi: Taxonomy Induction for Fictional Domains [Extended version]

    No full text
    Taxonomies are important building blocks of structured knowledge bases, and their construction from text sources and Wikipedia has received much attention. In this paper we focus on the construction of taxonomies for fictional domains, using noisy category systems from fan wikis or text extraction as input. Such fictional domains are archetypes of entity universes that are poorly covered by Wikipedia, such as also enterprise-specific knowledge bases or highly specialized verticals. Our fiction-targeted approach, called TiFi, consists of three phases: (i) category cleaning, by identifying candidate categories that truly represent classes in the domain of interest, (ii) edge cleaning, by selecting subcategory relationships that correspond to class subsumption, and (iii) top-level construction, by mapping classes onto a subset of high-level WordNet categories. A comprehensive evaluation shows that TiFi is able to construct taxonomies for a diverse range of fictional domains such as Lord of the Rings, The Simpsons or Greek Mythology with very high precision and that it outperforms state-of-the-art baselines for taxonomy induction by a substantial margin

    Specializing distributional vectors of allwords for lexical entailment

    Get PDF
    Semantic specialization methods fine-tune distributional word vectors using lexical knowledge from external resources (e.g., WordNet) to accentuate a particular relation between words. However, such post-processing methods suffer from limited coverage as they affect only vectors of words seen in the external resources. We present the first postprocessing method that specializes vectors of all vocabulary words – including those unseen in the resources – for the asymmetric relation of lexical entailment (LE) (i.e., hyponymyhypernymy relation). Leveraging a partially LE-specialized distributional space, our POSTLE (i.e., post-specialization for LE) model learns an explicit global specialization function, allowing for specialization of vectors of unseen words, as well as word vectors from other languages via cross-lingual transfer. We capture the function as a deep feedforward neural network: its objective re-scales vector norms to reflect the concept hierarchy while simultaneously attracting hyponymyhypernymy pairs to better reflect semantic similarity. An extended model variant augments the basic architecture with an adversarial discriminator. We demonstrate the usefulness and versatility of POSTLE models with different input distributional spaces in different scenarios (monolingual LE and zero-shot cross-lingual LE transfer) and tasks (binary and graded LE). We report consistent gains over state-of-the-art LE-specialization methods, and successfully LE-specialize word vectors for languages without any external lexical knowledge
    • …
    corecore