34,331 research outputs found

    Specification Patterns for Robotic Missions

    Get PDF
    Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing the need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation, or guiding the implementation. For instance, the logical language LTL is commonly used by experts to specify missions, as an input for planners, which synthesize the behavior a robot should have. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems, each of which detailing the usage intent, known uses, relationships to other patterns, and---most importantly---a template mission specification in temporal logic. Our tooling produces specifications expressed in the LTL and CTL temporal logics to be used by planners, simulators, or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns' correctness with simulators and two real robots

    Integrating Analysis Into a Warehouse Design Workflow

    Get PDF
    Supply chain analyses, including those related to material handling systems, are typically purpose-built to answer specific questions and therefore have many different implementations depending on the question, the instance data, and the solver. The purpose-built nature of these models makes it difficult to integrate them into an iterative design workflow. Despite the myriad analysis implementations, the fundamental structure of these systems and their problem domain remains unchanged, suggesting that perhaps analyses could be automatically generated on demand, given an appropriate specification of the particular system to be analyzed. We apply model-based systems engineering (MBSE) methodologies to explore this possibility in the context of functional warehouse design

    Contracts and Behavioral Patterns for SoS: The EU IP DANSE approach

    Full text link
    This paper presents some of the results of the first year of DANSE, one of the first EU IP projects dedicated to SoS. Concretely, we offer a tool chain that allows to specify SoS and SoS requirements at high level, and analyse them using powerful toolsets coming from the formal verification area. At the high level, we use UPDM, the system model provided by the british army as well as a new type of contract based on behavioral patterns. At low level, we rely on a powerful simulation toolset combined with recent advances from the area of statistical model checking. The approach has been applied to a case study developed at EADS Innovation Works.Comment: In Proceedings AiSoS 2013, arXiv:1311.319

    The knowledge domain of chain and network science

    Get PDF
    This editorial paper aims to provide a framework to categorise and evaluate the domain of Chain and Network Science (CNS), and to provide an envelope for the research and management agenda. The authors strongly feel that although considerable progress has been made over the past couple of years in the development of the CNS domain, a number of important and exciting challenges are still waiting to be tackled. This paper provides a definition of the object of study of CNS, its central problem area, the organisation and governance of chain and network co-operation, and the relationships between chain organisation and technology development, market dynamics, and the economy and society at large. It indicates relevant sources of knowledge among the various academic disciplines. It touches upon CNS problem solving by identifying areas for knowledge development and CNS tool construction

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    • 

    corecore