11,373 research outputs found

    Post-transcriptional knowledge in pathway analysis increases the accuracy of phenotypes classification

    Get PDF
    Motivation: Prediction of phenotypes from high-dimensional data is a crucial task in precision biology and medicine. Many technologies employ genomic biomarkers to characterize phenotypes. However, such elements are not sufficient to explain the underlying biology. To improve this, pathway analysis techniques have been proposed. Nevertheless, such methods have shown lack of accuracy in phenotypes classification. Results: Here we propose a novel methodology called MITHrIL (Mirna enrIched paTHway Impact anaLysis) for the analysis of signaling pathways, which has built on top of the work of Tarca et al., 2009. MITHrIL extends pathways by adding missing regulatory elements, such as microRNAs, and their interactions with genes. The method takes as input the expression values of genes and/or microRNAs and returns a list of pathways sorted according to their deregulation degree, together with the corresponding statistical significance (p-values). Our analysis shows that MITHrIL outperforms its competitors even in the worst case. In addition, our method is able to correctly classify sets of tumor samples drawn from TCGA. Availability: MITHrIL is freely available at the following URL: http://alpha.dmi.unict.it/mithril

    INTEGRATIVE ANALYSIS OF OMICS DATA IN ADULT GLIOMA AND OTHER TCGA CANCERS TO GUIDE PRECISION MEDICINE

    Get PDF
    Transcriptomic profiling and gene expression signatures have been widely applied as effective approaches for enhancing the molecular classification, diagnosis, prognosis or prediction of therapeutic response towards personalized therapy for cancer patients. Thanks to modern genome-wide profiling technology, scientists are able to build engines leveraging massive genomic variations and integrating with clinical data to identify “at risk” individuals for the sake of prevention, diagnosis and therapeutic interventions. In my graduate work for my Ph.D. thesis, I have investigated genomic sequencing data mining to comprehensively characterise molecular classifications and aberrant genomic events associated with clinical prognosis and treatment response, through applying high-dimensional omics genomic data to promote the understanding of gene signatures and somatic molecular alterations contributing to cancer progression and clinical outcomes. Following this motivation, my dissertation has been focused on the following three topics in translational genomics. 1) Characterization of transcriptomic plasticity and its association with the tumor microenvironment in glioblastoma (GBM). I have integrated transcriptomic, genomic, protein and clinical data to increase the accuracy of GBM classification, and identify the association between the GBM mesenchymal subtype and reduced tumorpurity, accompanied with increased presence of tumor-associated microglia. Then I have tackled the sole source of microglial as intrinsic tumor bulk but not their corresponding neurosphere cells through both transcriptional and protein level analysis using a panel of sphere-forming glioma cultures and their parent GBM samples.FurthermoreI have demonstrated my hypothesis through longitudinal analysis of paired primary and recurrent GBM samples that the phenotypic alterations of GBM subtypes are not due to intrinsic proneural-to-mesenchymal transition in tumor cells, rather it is intertwined with increased level of microglia upon disease recurrence. Collectively I have elucidated the critical role of tumor microenvironment (Microglia and macrophages from central nervous system) contributing to the intra-tumor heterogeneity and accurate classification of GBM patients based on transcriptomic profiling, which will not only significantly impact on clinical perspective but also pave the way for preclinical cancer research. 2) Identification of prognostic gene signatures that stratify adult diffuse glioma patientsharboring1p/19q co-deletions. I have compared multiple statistical methods and derived a gene signature significantly associated with survival by applying a machine learning algorithm. Then I have identified inflammatory response and acetylation activity that associated with malignant progression of 1p/19q co-deleted glioma. In addition, I showed this signature translates to other types of adult diffuse glioma, suggesting its universality in the pathobiology of other subset gliomas. My efforts on integrative data analysis of this highly curated data set usingoptimizedstatistical models will reflect the pending update to WHO classification system oftumorsin the central nervous system (CNS). 3) Comprehensive characterization of somatic fusion transcripts in Pan-Cancers. I have identified a panel of novel fusion transcripts across all of TCGA cancer types through transcriptomic profiling. Then I have predicted fusion proteins with kinase activity and hub function of pathway network based on the annotation of genetically mobile domains and functional domain architectures. I have evaluated a panel of in -frame gene fusions as potential driver mutations based on network fusion centrality hypothesis. I have also characterised the emerging complexity of genetic architecture in fusion transcripts through integrating genomic structure and somatic variants and delineating the distinct genomic patterns of fusion events across different cancer types. Overall my exploration of the pathogenetic impact and clinical relevance of candidate gene fusions have provided fundamental insights into the management of a subset of cancer patients by predicting the oncogenic signalling and specific drug targets encoded by these fusion genes. Taken together, the translational genomic research I have conducted during my Ph.D. study will shed new light on precision medicine and contribute to the cancer research community. The novel classification concept, gene signature and fusion transcripts I have identified will address several hotly debated issues in translational genomics, such as complex interactions between tumor bulks and their adjacent microenvironments, prognostic markers for clinical diagnostics and personalized therapy, distinct patterns of genomic structure alterations and oncogenic events in different cancer types, therefore facilitating our understanding of genomic alterations and moving us towards the development of precision medicine

    BcCluster: a bladder cancer database at the molecular level

    Get PDF
    Background: Bladder Cancer (BC) has two clearly distinct phenotypes. Non-muscle invasive BC has good prognosis and is treated with tumor resection and intravesical therapy whereas muscle invasive BC has poor prognosis and requires usually systemic cisplatin based chemotherapy either prior to or after radical cystectomy. Neoadjuvant chemotherapy is not often used for patients undergoing cystectomy. High-throughput analytical omics techniques are now available that allow the identification of individual molecular signatures to characterize the invasive phenotype. However, a large amount of data produced by omics experiments is not easily accessible since it is often scattered over many publications or stored in supplementary files. Objective: To develop a novel open-source database, BcCluster (http://www.bccluster.org/), dedicated to the comprehensive molecular characterization of muscle invasive bladder carcinoma. Materials: A database was created containing all reported molecular features significant in invasive BC. The query interface was developed in Ruby programming language (version 1.9.3) using the web-framework Rails (version 4.1.5) (http://rubyonrails.org/). Results: BcCluster contains the data from 112 published references, providing 1,559 statistically significant features relative to BC invasion. The database also holds 435 protein-protein interaction data and 92 molecular pathways significant in BC invasion. The database can be used to retrieve binding partners and pathways for any protein of interest. We illustrate this possibility using survivin, a known BC biomarker. Conclusions: BcCluster is an online database for retrieving molecular signatures relative to BC invasion. This application offers a comprehensive view of BC invasiveness at the molecular level and allows formulation of research hypotheses relevant to this phenotype

    TargetMine, an Integrated Data Warehouse for Candidate Gene Prioritisation and Target Discovery

    Get PDF
    Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and biomedical research in general. An integrated approach that combines results from multiple data types is best suited for optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.nibio.go.jp/

    Pathway-Based Genomics Prediction using Generalized Elastic Net.

    Get PDF
    We present a novel regularization scheme called The Generalized Elastic Net (GELnet) that incorporates gene pathway information into feature selection. The proposed formulation is applicable to a wide variety of problems in which the interpretation of predictive features using known molecular interactions is desired. The method naturally steers solutions toward sets of mechanistically interlinked genes. Using experiments on synthetic data, we demonstrate that pathway-guided results maintain, and often improve, the accuracy of predictors even in cases where the full gene network is unknown. We apply the method to predict the drug response of breast cancer cell lines. GELnet is able to reveal genetic determinants of sensitivity and resistance for several compounds. In particular, for an EGFR/HER2 inhibitor, it finds a possible trans-differentiation resistance mechanism missed by the corresponding pathway agnostic approach

    MICA: microRNA integration for active module discovery

    Get PDF
    A successful method to address disease-specific module discovery is the integration of the gene expression data with the protein-protein interaction~(PPI) network. Although many algorithms have been developed for this purpose, they focus only on the network genes~(mostly on the well-connected ones); totally neglecting the genes whose interactions are partially or totally not known. In addition, they only make use of the gene expression data which does not give the complete picture about the actual protein expression levels. The cell uses different mechanisms, such as microRNAs, to post-transcriptionally regulate the proteins without affecting the corresponding genes' expressions. Due to this complexity, using a single data type is definitely not the correct way to find the correct module(s). Today, the unprecedented amount of publicly available disease-related heterogeneous data encourages the development of new methodologies to better understand complex diseases. In this work, we propose a novel workflow Mica, which, to the best of our knowledge, is the first study integrating miRNA, mRNA, and PPI information to identify disease-specific gene modules. The novelty of the Mica lies in many directions, such as the early modification of mRNA expression with microRNA to better highlight the indirect dependencies between the genes. We applied Mica on microRNA-Seq and mRNA-Seq data sets of 699699 invasive ductal carcinoma samples and 150150 invasive lobular carcinoma samples from the Cancer Genome Atlas Project~(TCGA). The Mica modules are shown to unravel new and interesting dependencies between the genes. Additionally, the modules accurately differentiate between the case and control samples while being highly enriched with disease-specific pathways and genes

    A toxicogenomic data space for system-level understanding and prediction of EDC-induced toxicity.

    Get PDF
    Endocrine disrupting compounds (EDCs) are a persistent threat to humans and wildlife due to their ability to interfere with endocrine signaling pathways. Inspired by previous work to improve chemical hazard identification through the use of toxicogenomics data, we developed a genomic-oriented data space for profiling the molecular activity of EDCs in an in silico manner, and for creating predictive models that identify and prioritize EDCs. Predictive models of EDCs, derived from gene expression data from rats (in vivo and in vitro primary hepatocytes) and humans (in vitro primary hepatocytes and HepG2), achieve testing accuracy greater than 90%. Negative test sets indicate that known safer chemicals are not predicted as EDCs. The rat in vivo-based classifiers achieve accuracy greater than 75% when tested for invitro to in vivoextrapolation. This study reveals key metabolic pathways and genes affected by EDCs together with a set of predictive models that utilize these pathways to prioritize EDCs in dose/time dependent manner and to predict EDCevokedmetabolic diseases

    Machine Learning Models for Deciphering Regulatory Mechanisms and Morphological Variations in Cancer

    Get PDF
    The exponential growth of multi-omics biological datasets is resulting in an emerging paradigm shift in fundamental biological research. In recent years, imaging and transcriptomics datasets are increasingly incorporated into biological studies, pushing biology further into the domain of data-intensive-sciences. New approaches and tools from statistics, computer science, and data engineering are profoundly influencing biological research. Harnessing this ever-growing deluge of multi-omics biological data requires the development of novel and creative computational approaches. In parallel, fundamental research in data sciences and Artificial Intelligence (AI) has advanced tremendously, allowing the scientific community to generate a massive amount of knowledge from data. Advances in Deep Learning (DL), in particular, are transforming many branches of engineering, science, and technology. Several of these methodologies have already been adapted for harnessing biological datasets; however, there is still a need to further adapt and tailor these techniques to new and emerging technologies. In this dissertation, we present computational algorithms and tools that we have developed to study gene-regulation and cellular morphology in cancer. The models and platforms that we have developed are general and widely applicable to several problems relating to dysregulation of gene expression in diseases. Our pipelines and software packages are disseminated in public repositories for larger scientific community use. This dissertation is organized in three main projects. In the first project, we present Causal Inference Engine (CIE), an integrated platform for the identification and interpretation of active regulators of transcriptional response. The platform offers visualization tools and pathway enrichment analysis to map predicted regulators to Reactome pathways. We provide a parallelized R-package for fast and flexible directional enrichment analysis to run the inference on custom regulatory networks. Next, we designed and developed MODEX, a fully automated text-mining system to extract and annotate causal regulatory interaction between Transcription Factors (TFs) and genes from the biomedical literature. MODEX uses putative TF-gene interactions derived from high-throughput ChIP-Seq or other experiments and seeks to collect evidence and meta-data in the biomedical literature to validate and annotate the interactions. MODEX is a complementary platform to CIE that provides auxiliary information on CIE inferred interactions by mining the literature. In the second project, we present a Convolutional Neural Network (CNN) classifier to perform a pan-cancer analysis of tumor morphology, and predict mutations in key genes. The main challenges were to determine morphological features underlying a genetic status and assess whether these features were common in other cancer types. We trained an Inception-v3 based model to predict TP53 mutation in five cancer types with the highest rate of TP53 mutations. We also performed a cross-classification analysis to assess shared morphological features across multiple cancer types. Further, we applied a similar methodology to classify HER2 status in breast cancer and predict response to treatment in HER2 positive samples. For this study, our training slides were manually annotated by expert pathologists to highlight Regions of Interest (ROIs) associated with HER2+/- tumor microenvironment. Our results indicated that there are strong morphological features associated with each tumor type. Moreover, our predictions highly agree with manual annotations in the test set, indicating the feasibility of our approach in devising an image-based diagnostic tool for HER2 status and treatment response prediction. We have validated our model using samples from an independent cohort, which demonstrates the generalizability of our approach. Finally, in the third project, we present an approach to use spatial transcriptomics data to predict spatially-resolved active gene regulatory mechanisms in tissues. Using spatial transcriptomics, we identified tissue regions with differentially expressed genes and applied our CIE methodology to predict active TFs that can potentially regulate the marker genes in the region. This project bridged the gap between inference of active regulators using molecular data and morphological studies using images. The results demonstrate a significant local pattern in TF activity across the tissue, indicating differential spatial-regulation in tissues. The results suggest that the integrative analysis of spatial transcriptomics data with CIE can capture discriminant features and identify localized TF-target links in the tissue
    corecore