16,867 research outputs found

    An XML Query Engine for Network-Bound Data

    Get PDF
    XML has become the lingua franca for data exchange and integration across administrative and enterprise boundaries. Nearly all data providers are adding XML import or export capabilities, and standard XML Schemas and DTDs are being promoted for all types of data sharing. The ubiquity of XML has removed one of the major obstacles to integrating data from widely disparate sources ā€“- namely, the heterogeneity of data formats. However, general-purpose integration of data across the wide area also requires a query processor that can query data sources on demand, receive streamed XML data from them, and combine and restructure the data into new XML output -- while providing good performance for both batch-oriented and ad-hoc, interactive queries. This is the goal of the Tukwila data integration system, the first system that focuses on network-bound, dynamic XML data sources. In contrast to previous approaches, which must read, parse, and often store entire XML objects before querying them, Tukwila can return query results even as the data is streaming into the system. Tukwila is built with a new system architecture that extends adaptive query processing and relational-engine techniques into the XML realm, as facilitated by a pair of operators that incrementally evaluate a queryā€™s input path expressions as data is read. In this paper, we describe the Tukwila architecture and its novel aspects, and we experimentally demonstrate that Tukwila provides better overall query performance and faster initial answers than existing systems, and has excellent scalability

    An Expressive Language and Efficient Execution System for Software Agents

    Full text link
    Software agents can be used to automate many of the tedious, time-consuming information processing tasks that humans currently have to complete manually. However, to do so, agent plans must be capable of representing the myriad of actions and control flows required to perform those tasks. In addition, since these tasks can require integrating multiple sources of remote information ? typically, a slow, I/O-bound process ? it is desirable to make execution as efficient as possible. To address both of these needs, we present a flexible software agent plan language and a highly parallel execution system that enable the efficient execution of expressive agent plans. The plan language allows complex tasks to be more easily expressed by providing a variety of operators for flexibly processing the data as well as supporting subplans (for modularity) and recursion (for indeterminate looping). The executor is based on a streaming dataflow model of execution to maximize the amount of operator and data parallelism possible at runtime. We have implemented both the language and executor in a system called THESEUS. Our results from testing THESEUS show that streaming dataflow execution can yield significant speedups over both traditional serial (von Neumann) as well as non-streaming dataflow-style execution that existing software and robot agent execution systems currently support. In addition, we show how plans written in the language we present can represent certain types of subtasks that cannot be accomplished using the languages supported by network query engines. Finally, we demonstrate that the increased expressivity of our plan language does not hamper performance; specifically, we show how data can be integrated from multiple remote sources just as efficiently using our architecture as is possible with a state-of-the-art streaming-dataflow network query engine

    Semi-automatic semantic enrichment of raw sensor data

    Get PDF
    One of the more recent sources of large volumes of generated data is sensor devices, where dedicated sensing equipment is used to monitor events and happenings in a wide range of domains, including monitoring human biometrics. In recent trials to examine the effects that key moments in movies have on the human body, we fitted fitted with a number of biometric sensor devices and monitored them as they watched a range of dierent movies in groups. The purpose of these experiments was to examine the correlation between humans' highlights in movies as observed from biometric sensors, and highlights in the same movies as identified by our automatic movie analysis techniques. However,the problem with this type of experiment is that both the analysis of the video stream and the sensor data readings are not directly usable in their raw form because of the sheer volume of low-level data values generated both from the sensors and from the movie analysis. This work describes the semi-automated enrichment of both video analysis and sensor data and the mechanism used to query the data in both centralised environments, and in a peer-to-peer architecture when the number of sensor devices grows to large numbers. We present and validate a scalable means of semi-automating the semantic enrichment of sensor data, thereby providing a means of large-scale sensor management

    LEVERAGING SOA IN BANKING SYSTEMS INTEGRATION

    Get PDF
    There is no doubt that the systems integration is one of the most important and complicated tasks in software filed especially for complex applications like banking systems. Complexity in integrating banking systems often comes from continues changes in both technical and business features provided by them to meet customer needs. Banking systems always come from different software vendors which mean using platforms and different design and architecture patterns, and this for sure adds extra complexity for integrating them. Serviceoriented architecture (SOA) is a promising method in software filed that aims to build or restructure software systems in a manner that makes their maintenance and integration easier. Agility is the most important goal that should be achieved when building and integrating banking systems. Simply, agility is needed to meet market needs quickly and efficiently and SOA is the way that could provide itSOA, SOI, P2P Integration, Web Services, and Legacy Code

    PQL: A Declarative Query Language over Dynamic Biological Schemata

    Get PDF
    We introduce the PQL query language (PQL) used in the GeneSeek genetic data integration project. PQL incorporates many features of query languages for semi-structured data. To this we add the ability to express metadata constraints like intended semantics and database curation approach. These constraints guide the dynamic generation of potential query plans. This allows a single query to remain relevant even in the presence of source and mediated schemas that are continually evolving, as is often the case in data integration

    Distributed XQuery

    Get PDF
    XQuery is increasingly being used for ad-hoc integration of heterogeneous data sources that are logically mapped to XML. For example, scientists need to query multiple scientific databases, which are distributed over a large geographic area, and it is possible to use XQuery for that. However, the language currently supports only the data shipping query evaluation model (through the document() function): it fetches all data sources to a single server, then runs the query there. This is a major limitation for many applications, especially when some data sources are very large, or when a data source is only a virtual XML view over some other logical data model. We propose here a simple extension to XQuery that allows query shipping to be expressed in the language, in addition to data shipping

    Towards a mobile computing middleware: a synergy of reflection and mobile code techniques

    Get PDF
    The increasing popularity of wireless devices, such as mobile phones, personal digital assistants, watches and the like. is enabling new classes of applications that present challenging problems to designers. Applications have to be aware of, and adapt to, frequent variations in the context of execution, such as fluctuating network bandwidth, decreasing batten, power, changes in location or device capabilities, and so on. In this paper, we argue that middleware solutions for wired distributed systems cannot be used in a mobile setting, as the principle of transparency that has driven their design runs counter to the new degrees of awareness imposed by mobility: We propose a synergy of reflection and code mobility as a means for middleware to give applications the desired level of flexibility to react to changes happening in the environment, including those that have not necessarily been foreseen by middleware designers. We ruse the sharing and processing of images as an application scenario to highlight the advantages of our approach
    • ā€¦
    corecore