897 research outputs found

    Personalized retrieval of sports video

    Full text link

    Goal Detection in Soccer Video: Role-Based Events Detection Approach

    Get PDF
    Soccer video processing and analysis to find critical events such as occurrences of goal event have been one of the important issues and topics of active researches in recent years. In this paper, a new role-based framework is proposed for goal event detection in which the semantic structure of soccer game is used. Usually after a goal scene, the audiences’ and reporters’ sound intensity is increased, ball is sent back to the center and the camera may: zoom on Player, show audiences’ delighting, repeat the goal scene or display a combination of them. Thus, the occurrence of goal event will be detectable by analysis of sequences of above roles. The proposed framework in this paper consists of four main procedures: 1- detection of game’s critical events by using audio channel, 2- detection of shot boundary and shots classification, 3- selection of candidate events according to the type of shot and existence of goalmouth in the shot, 4- detection of restarting the game from the center of the field. A new method for shot classification is also presented in this framework. Finally, by applying the proposed method it was shown that the goal events detection has a good accuracy and the percentage of detection failure is also very low.DOI:http://dx.doi.org/10.11591/ijece.v4i6.637

    Multimodal Data Analytics and Fusion for Data Science

    Get PDF
    Advances in technologies have rapidly accumulated a zettabyte of “new” data every two years. The huge amount of data have a powerful impact on various areas in science and engineering and generates enormous research opportunities, which calls for the design and development of advanced approaches in data analytics. Given such demands, data science has become an emerging hot topic in both industry and academia, ranging from basic business solutions, technological innovations, and multidisciplinary research to political decisions, urban planning, and policymaking. Within the scope of this dissertation, a multimodal data analytics and fusion framework is proposed for data-driven knowledge discovery and cross-modality semantic concept detection. The proposed framework can explore useful knowledge hidden in different formats of data and incorporate representation learning from data in multimodalities, especial for disaster information management. First, a Feature Affinity-based Multiple Correspondence Analysis (FA-MCA) method is presented to analyze the correlations between low-level features from different features, and an MCA-based Neural Network (MCA-NN) ispro- posedto capture the high-level features from individual FA-MCA models and seamlessly integrate the semantic data representations for video concept detection. Next, a genetic algorithm-based approach is presented for deep neural network selection. Furthermore, the improved genetic algorithm is integrated with deep neural networks to generate populations for producing optimal deep representation learning models. Then, the multimodal deep representation learning framework is proposed to incorporate the semantic representations from data in multiple modalities efficiently. At last, fusion strategies are applied to accommodate multiple modalities. In this framework, cross-modal mapping strategies are also proposed to organize the features in a better structure to improve the overall performance

    Bridging semantic gap: learning and integrating semantics for content-based retrieval

    Full text link
    Digital cameras have entered ordinary homes and produced^incredibly large number of photos. As a typical example of broad image domain, unconstrained consumer photos vary significantly. Unlike professional or domain-specific images, the objects in the photos are ill-posed, occluded, and cluttered with poor lighting, focus, and exposure. Content-based image retrieval research has yet to bridge the semantic gap between computable low-level information and high-level user interpretation. In this thesis, we address the issue of semantic gap with a structured learning framework to allow modular extraction of visual semantics. Semantic image regions (e.g. face, building, sky etc) are learned statistically, detected directly from image without segmentation, reconciled across multiple scales, and aggregated spatially to form compact semantic index. To circumvent the ambiguity and subjectivity in a query, a new query method that allows spatial arrangement of visual semantics is proposed. A query is represented as a disjunctive normal form of visual query terms and processed using fuzzy set operators. A drawback of supervised learning is the manual labeling of regions as training samples. In this thesis, a new learning framework to discover local semantic patterns and to generate their samples for training with minimal human intervention has been developed. The discovered patterns can be visualized and used in semantic indexing. In addition, three new class-based indexing schemes are explored. The winnertake- all scheme supports class-based image retrieval. The class relative scheme and the local classification scheme compute inter-class memberships and local class patterns as indexes for similarity matching respectively. A Bayesian formulation is proposed to unify local and global indexes in image comparison and ranking that resulted in superior image retrieval performance over those of single indexes. Query-by-example experiments on 2400 consumer photos with 16 semantic queries show that the proposed approaches have significantly better (18% to 55%) average precisions than a high-dimension feature fusion approach. The thesis has paved two promising research directions, namely the semantics design approach and the semantics discovery approach. They form elegant dual frameworks that exploits pattern classifiers in learning and integrating local and global image semantics

    A Survey of Deep Learning in Sports Applications: Perception, Comprehension, and Decision

    Full text link
    Deep learning has the potential to revolutionize sports performance, with applications ranging from perception and comprehension to decision. This paper presents a comprehensive survey of deep learning in sports performance, focusing on three main aspects: algorithms, datasets and virtual environments, and challenges. Firstly, we discuss the hierarchical structure of deep learning algorithms in sports performance which includes perception, comprehension and decision while comparing their strengths and weaknesses. Secondly, we list widely used existing datasets in sports and highlight their characteristics and limitations. Finally, we summarize current challenges and point out future trends of deep learning in sports. Our survey provides valuable reference material for researchers interested in deep learning in sports applications

    Time-slice analysis of dyadic human activity

    Get PDF
    La reconnaissance d’activités humaines à partir de données vidéo est utilisée pour la surveillance ainsi que pour des applications d’interaction homme-machine. Le principal objectif est de classer les vidéos dans l’une des k classes d’actions à partir de vidéos entièrement observées. Cependant, de tout temps, les systèmes intelligents sont améliorés afin de prendre des décisions basées sur des incertitudes et ou des informations incomplètes. Ce besoin nous motive à introduire le problème de l’analyse de l’incertitude associée aux activités humaines et de pouvoir passer à un nouveau niveau de généralité lié aux problèmes d’analyse d’actions. Nous allons également présenter le problème de reconnaissance d’activités par intervalle de temps, qui vise à explorer l’activité humaine dans un intervalle de temps court. Il a été démontré que l’analyse par intervalle de temps est utile pour la caractérisation des mouvements et en général pour l’analyse de contenus vidéo. Ces études nous encouragent à utiliser ces intervalles de temps afin d’analyser l’incertitude associée aux activités humaines. Nous allons détailler à quel degré de certitude chaque activité se produit au cours de la vidéo. Dans cette thèse, l’analyse par intervalle de temps d’activités humaines avec incertitudes sera structurée en 3 parties. i) Nous présentons une nouvelle famille de descripteurs spatiotemporels optimisés pour la prédiction précoce avec annotations d’intervalle de temps. Notre représentation prédictive du point d’intérêt spatiotemporel (Predict-STIP) est basée sur l’idée de la contingence entre intervalles de temps. ii) Nous exploitons des techniques de pointe pour extraire des points d’intérêts afin de représenter ces intervalles de temps. iii) Nous utilisons des relations (uniformes et par paires) basées sur les réseaux neuronaux convolutionnels entre les différentes parties du corps de l’individu dans chaque intervalle de temps. Les relations uniformes enregistrent l’apparence locale de la partie du corps tandis que les relations par paires captent les relations contextuelles locales entre les parties du corps. Nous extrayons les spécificités de chaque image dans l’intervalle de temps et examinons différentes façons de les agréger temporellement afin de générer un descripteur pour tout l’intervalle de temps. En outre, nous créons une nouvelle base de données qui est annotée à de multiples intervalles de temps courts, permettant la modélisation de l’incertitude inhérente à la reconnaissance d’activités par intervalle de temps. Les résultats expérimentaux montrent l’efficience de notre stratégie dans l’analyse des mouvements humains avec incertitude.Recognizing human activities from video data is routinely leveraged for surveillance and human-computer interaction applications. The main focus has been classifying videos into one of k action classes from fully observed videos. However, intelligent systems must to make decisions under uncertainty, and based on incomplete information. This need motivates us to introduce the problem of analysing the uncertainty associated with human activities and move to a new level of generality in the action analysis problem. We also present the problem of time-slice activity recognition which aims to explore human activity at a small temporal granularity. Time-slice recognition is able to infer human behaviours from a short temporal window. It has been shown that temporal slice analysis is helpful for motion characterization and for video content representation in general. These studies motivate us to consider timeslices for analysing the uncertainty associated with human activities. We report to what degree of certainty each activity is occurring throughout the video from definitely not occurring to definitely occurring. In this research, we propose three frameworks for time-slice analysis of dyadic human activity under uncertainty. i) We present a new family of spatio-temporal descriptors which are optimized for early prediction with time-slice action annotations. Our predictive spatiotemporal interest point (Predict-STIP) representation is based on the intuition of temporal contingency between time-slices. ii) we exploit state-of-the art techniques to extract interest points in order to represent time-slices. We also present an accumulative uncertainty to depict the uncertainty associated with partially observed videos for the task of early activity recognition. iii) we use Convolutional Neural Networks-based unary and pairwise relations between human body joints in each time-slice. The unary term captures the local appearance of the joints while the pairwise term captures the local contextual relations between the parts. We extract these features from each frame in a time-slice and examine different temporal aggregations to generate a descriptor for the whole time-slice. Furthermore, we create a novel dataset which is annotated at multiple short temporal windows, allowing the modelling of the inherent uncertainty in time-slice activity recognition. All the three methods have been evaluated on TAP dataset. Experimental results demonstrate the effectiveness of our framework in the analysis of dyadic activities under uncertaint
    • …
    corecore