39 research outputs found

    Integrating mission, logistics, and task planning for skills-based robot control in industrial kitting applications

    Get PDF
    This paper presents an integrated cognitive robotics systemfor industrial kitting operations in a modern factory setting.The robot system combines low-level robot control and execution monitoring with automated mission and task planning,and a logistics planner which communicates with the factory’smanufacturing execution system. The system has been implemented and tested on a series of automotive kitting problems,where collections of parts are picked from a warehouse anddelivered to the production line. The system has been empirically evaluated and the complete framework shown to besuccessful at assembling kits in a small factory environment

    Integrating Mission and Task Planning in an Industrial Robotics Framework

    Get PDF
    This paper presents a framework developed for an industrial robotics system that utilises two different planning components. At a high level, a multi-robot mission planner interfaces with a fleet and environment manager and uses multiagent planning techniques to build mission assignments to be distributed to a robot fleet. On each robot, a task planner automatically converts the robot's world model and skill definitions into a planning problem which is then solved to find a sequence of actions that the robot should perform to complete its mission. This framework is demonstrated on an industrial kitting task in a real-world factory environment

    Systematic mapping literature review of mobile robotics competitions

    Get PDF
    This paper presents a systematic mapping literature review about the mobile robotics competitions that took place over the last few decades in order to obtain an overview of the main objectives, target public, challenges, technologies used and final application area to show how these competitions have been contributing to education. In the review we found 673 papers from 5 different databases and at the end of the process, 75 papers were classified to extract all the relevant information using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. More than 50 mobile robotics competitions were found and it was possible to analyze most of the competitions in detail in order to answer the research questions, finding the main goals, target public, challenges, technologies and application area, mainly in education.info:eu-repo/semantics/publishedVersio

    Towards an infrastructure for preparation and control of intelligent automation systems

    Get PDF
    In an attempt to handle some of the challenges of modern production, intelligent automation systems offer solutions that are flexible, adaptive, and collaborative. Contrary to traditional solutions, intelligent automation systems emerged just recently and thus lack the supporting tools and infrastructure that traditional systems nowadays take for granted. To support efficient development, commissioning, and control of such systems, this thesis summarizes various lessons learned during years of implementation. Based on what was learned, this thesis investigates key features of infrastructure for modern and flexible intelligent automation systems, as well as a number of important design solutions. For example, an important question is raised whether to decentralize the global state or to give complete access to the main controller.Moreover, in order to develop such systems, a framework for virtual preparation and commissioning is presented, with the main goal to offer support for engineers. As traditional virtual commissioning solutions are not intended for preparing highly flexible, collaborative, and dynamic systems, this framework aims to provide some of the groundwork and point to a direction for fast and integrated preparation and virtual commissioning of such systems.Finally, this thesis summarizes some of the investigations made on planning as satisfiability, in order to evaluate how different methods improve planning performance. Throughout the thesis, an industrial material kitting use case exemplifies presented perspectives, lessons learned, and frameworks

    Autonomous Finite Capacity Scheduling using Biological Control Principles

    Get PDF
    The vast majority of the research efforts in finite capacity scheduling over the past several years has focused on the generation of precise and almost exact measures for the working schedule presupposing complete information and a deterministic environment. During execution, however, production may be the subject of considerable variability, which may lead to frequent schedule interruptions. Production scheduling mechanisms are developed based on centralised control architecture in which all of the knowledge base and databases are modelled at the same location. This control architecture has difficulty in handling complex manufacturing systems that require knowledge and data at different locations. Adopting biological control principles refers to the process where a schedule is developed prior to the start of the processing after considering all the parameters involved at a resource involved and updated accordingly as the process executes. This research reviews the best practices in gene transcription and translation control methods and adopts these principles in the development of an autonomous finite capacity scheduling control logic aimed at reducing excessive use of manual input in planning tasks. With autonomous decision-making functionality, finite capacity scheduling will as much as practicably possible be able to respond autonomously to schedule disruptions by deployment of proactive scheduling procedures that may be used to revise or re-optimize the schedule when unexpected events occur. The novelty of this work is the ability of production resources to autonomously take decisions and the same way decisions are taken by autonomous entities in the process of gene transcription and translation. The idea has been implemented by the integration of simulation and modelling techniques with Taguchi analysis to investigate the contributions of finite capacity scheduling factors, and determination of the ‘what if’ scenarios encountered due to the existence of variability in production processes. The control logic adopts the induction rules as used in gene expression control mechanisms, studied in biological systems. Scheduling factors are identified to that effect and are investigated to find their effects on selected performance measurements for each resource in used. How they are used to deal with variability in the process is one major objective for this research as it is because of the variability that autonomous decision making becomes of interest. Although different scheduling techniques have been applied and are successful in production planning and control, the results obtained from the inclusion of the autonomous finite capacity scheduling control logic has proved that significant improvement can still be achieved

    Space Biology Initiative. Trade Studies, volume 1

    Get PDF
    The six studies which are addressed are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves has a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software

    Management: A bibliography for NASA managers

    Get PDF
    This bibliography lists 706 reports, articles, and other documents introduced into the NASA scientific and technical information system in 1984. Entries, which include abstracts, are arranged in the following categories: human factors and personnel issues; management theory and techniques; industrial management and manufacturing; robotics and expert systems; computers and information management; research and development; economics, costs, and markets; logistics and operations management; reliability and quality control; and legality, legislation, and policy. Subject, personal author, corporate source, contract number, report number, and accession number indexes are included
    corecore