79,432 research outputs found

    Integrating meaning into quality evaluation of machine translation

    Get PDF
    Machine translation (MT) quality is evaluated through comparisons between MT outputs and the human translations (HT). Traditionally, this evaluation relies on form related features (e.g. lexicon and syntax) and ignores the transfer of meaning reflected in HT outputs. Instead, we evaluate the quality of MT outputs through meaning related features (e.g. polarity, subjectivity) with two experiments. In the first experiment, the meaning related features are compared to human rankings individually. In the second experiment, combinations of meaning related features and other quality metrics are utilized to predict the same human rankings. The results of our experiments confirm the benefit of these features in predicting human evaluation of translation quality in addition to traditional metrics which focus mainly on form

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Capturing lexical variation in MT evaluation using automatically built sense-cluster inventories

    Get PDF
    The strict character of most of the existing Machine Translation (MT) evaluation metrics does not permit them to capture lexical variation in translation. However, a central issue in MT evaluation is the high correlation that the metrics should have with human judgments of translation quality. In order to achieve a higher correlation, the identification of sense correspondences between the compared translations becomes really important. Given that most metrics are looking for exact correspondences, the evaluation results are often misleading concerning translation quality. Apart from that, existing metrics do not permit one to make a conclusive estimation of the impact of Word Sense Disambiguation techniques into MT systems. In this paper, we show how information acquired by an unsupervised semantic analysis method can be used to render MT evaluation more sensitive to lexical semantics. The sense inventories built by this data-driven method are incorporated into METEOR: they replace WordNet for evaluation in English and render METEOR’s synonymy module operable in French. The evaluation results demonstrate that the use of these inventories gives rise to an increase in the number of matches and the correlation with human judgments of translation quality, compared to precision-based metrics

    Multilingual Unsupervised Sentence Simplification

    Full text link
    Progress in Sentence Simplification has been hindered by the lack of supervised data, particularly in languages other than English. Previous work has aligned sentences from original and simplified corpora such as English Wikipedia and Simple English Wikipedia, but this limits corpus size, domain, and language. In this work, we propose using unsupervised mining techniques to automatically create training corpora for simplification in multiple languages from raw Common Crawl web data. When coupled with a controllable generation mechanism that can flexibly adjust attributes such as length and lexical complexity, these mined paraphrase corpora can be used to train simplification systems in any language. We further incorporate multilingual unsupervised pretraining methods to create even stronger models and show that by training on mined data rather than supervised corpora, we outperform the previous best results. We evaluate our approach on English, French, and Spanish simplification benchmarks and reach state-of-the-art performance with a totally unsupervised approach. We will release our models and code to mine the data in any language included in Common Crawl

    Experiments on domain adaptation for English-Hindi SMT

    Get PDF
    Statistical Machine Translation (SMT) systems are usually trained on large amounts of bilingual text and monolingual target language text. If a significant amount of out-of-domain data is added to the training data, the quality of translation can drop. On the other hand, training an SMT system on a small amount of training material for given indomain data leads to narrow lexical coverage which again results in a low translation quality. In this paper, (i) we explore domain-adaptation techniques to combine large out-of-domain training data with small-scale in-domain training data for English—Hindi statistical machine translation and (ii) we cluster large out-of-domain training data to extract sentences similar to in-domain sentences and apply adaptation techniques to combine clustered sub-corpora with in-domain training data into a unified framework, achieving a 0.44 absolute corresponding to a 4.03% relative improvement in terms of BLEU over the baseline
    • 

    corecore