303 research outputs found

    A Review on Explainable Artificial Intelligence for Healthcare: Why, How, and When?

    Full text link
    Artificial intelligence (AI) models are increasingly finding applications in the field of medicine. Concerns have been raised about the explainability of the decisions that are made by these AI models. In this article, we give a systematic analysis of explainable artificial intelligence (XAI), with a primary focus on models that are currently being used in the field of healthcare. The literature search is conducted following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) standards for relevant work published from 1 January 2012 to 02 February 2022. The review analyzes the prevailing trends in XAI and lays out the major directions in which research is headed. We investigate the why, how, and when of the uses of these XAI models and their implications. We present a comprehensive examination of XAI methodologies as well as an explanation of how a trustworthy AI can be derived from describing AI models for healthcare fields. The discussion of this work will contribute to the formalization of the XAI field.Comment: 15 pages, 3 figures, accepted for publication in the IEEE Transactions on Artificial Intelligenc

    A comparative analysis of rule-based, model-agnostic methods for explainable artificial intelligence

    Get PDF
    The ultimate goal of Explainable Artificial Intelligence is to build models that possess both high accuracy and degree of explainability. Understanding the inferences of such models can be seen as a process that discloses the relationships between their input and output. These relationships can be represented as a set of inference rules which are usually not explicit within a model. Scholars have proposed several methods for extracting rules from data-driven machine-learned models. However, limited work exists on their comparison. This study proposes a novel comparative approach to evaluate and compare the rulesets produced by four post-hoc rule extractors by employing six quantitative metrics. Findings demonstrate that these metrics can actually help identify superior methods over the others thus are capable of successfully modelling distinctively aspects of explainability

    Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

    Get PDF
    In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.Basque GovernmentConsolidated Research Group MATHMODE - Department of Education of the Basque Government IT1294-19Spanish GovernmentEuropean Commission TIN2017-89517-PBBVA Foundation through its Ayudas Fundacion BBVA a Equipos de Investigacion Cientifica 2018 call (DeepSCOP project)European Commission 82561

    Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI

    Get PDF
    In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability

    Explaining deep neural networks: A survey on the global interpretation methods

    Get PDF
    A substantial amount of research has been carried out in Explainable Artificial Intelligence (XAI) models, especially in those which explain the deep architectures of neural networks. A number of XAI approaches have been proposed to achieve trust in Artificial Intelligence (AI) models as well as provide explainability of specific decisions made within these models. Among these approaches, global interpretation methods have emerged as the prominent methods of explainability because they have the strength to explain every feature and the structure of the model. This survey attempts to provide a comprehensive review of global interpretation methods that completely explain the behaviour of the AI models. We present a taxonomy of the available global interpretations models and systematically highlight the critical features and algorithms that differentiate them from local as well as hybrid models of explainability. Through examples and case studies from the literature, we evaluate the strengths and weaknesses of the global interpretation models and assess challenges when these methods are put into practice. We conclude the paper by providing the future directions of research in how the existing challenges in global interpretation methods could be addressed and what values and opportunities could be realized by the resolution of these challenges

    AI in medical diagnosis : AI prediction & human judgment

    Get PDF
    AI has long been regarded as a panacea for decision-making and many other aspects of knowledge work; as something that will help humans get rid of their shortcomings. We believe that AI can be a useful asset to support decision-makers, but not that it should replace decision-makers. Decision-making uses algorithmic analysis, but it is not solely algorithmic analysis; it also involves other factors, many of which are very human, such as creativity, intuition, emotions, feelings, and value judgments. We have conducted semi-structured open-ended research interviews with 17 dermatologists to understand what they expect from an AI application to deliver to medical diagnosis. We have found four aggregate dimensions along which the thinking of dermatologists can be described: the ways in which our participants chose to interact with AI, responsibility, 'explainability', and the new way of thinking (mindset) needed for working with AI. We believe that our findings will help physicians who might consider using AI in their diagnosis to understand how to use AI beneficially. It will also be useful for AI vendors in improving their understanding of how medics want to use AI in diagnosis. Further research will be needed to examine if our findings have relevance in the wider medical field and beyond
    • 

    corecore