18,464 research outputs found

    What Can Help Pedestrian Detection?

    Full text link
    Aggregating extra features has been considered as an effective approach to boost traditional pedestrian detection methods. However, there is still a lack of studies on whether and how CNN-based pedestrian detectors can benefit from these extra features. The first contribution of this paper is exploring this issue by aggregating extra features into CNN-based pedestrian detection framework. Through extensive experiments, we evaluate the effects of different kinds of extra features quantitatively. Moreover, we propose a novel network architecture, namely HyperLearner, to jointly learn pedestrian detection as well as the given extra feature. By multi-task training, HyperLearner is able to utilize the information of given features and improve detection performance without extra inputs in inference. The experimental results on multiple pedestrian benchmarks validate the effectiveness of the proposed HyperLearner.Comment: Accepted to IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 201

    Integrated Deep and Shallow Networks for Salient Object Detection

    Full text link
    Deep convolutional neural network (CNN) based salient object detection methods have achieved state-of-the-art performance and outperform those unsupervised methods with a wide margin. In this paper, we propose to integrate deep and unsupervised saliency for salient object detection under a unified framework. Specifically, our method takes results of unsupervised saliency (Robust Background Detection, RBD) and normalized color images as inputs, and directly learns an end-to-end mapping between inputs and the corresponding saliency maps. The color images are fed into a Fully Convolutional Neural Networks (FCNN) adapted from semantic segmentation to exploit high-level semantic cues for salient object detection. Then the results from deep FCNN and RBD are concatenated to feed into a shallow network to map the concatenated feature maps to saliency maps. Finally, to obtain a spatially consistent saliency map with sharp object boundaries, we fuse superpixel level saliency map at multi-scale. Extensive experimental results on 8 benchmark datasets demonstrate that the proposed method outperforms the state-of-the-art approaches with a margin.Comment: Accepted by IEEE International Conference on Image Processing (ICIP) 201

    Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery

    Full text link
    Thanks to recent advances in CNNs, solid improvements have been made in semantic segmentation of high resolution remote sensing imagery. However, most of the previous works have not fully taken into account the specific difficulties that exist in remote sensing tasks. One of such difficulties is that objects are small and crowded in remote sensing imagery. To tackle with this challenging task we have proposed a novel architecture called local feature extraction (LFE) module attached on top of dilated front-end module. The LFE module is based on our findings that aggressively increasing dilation factors fails to aggregate local features due to sparsity of the kernel, and detrimental to small objects. The proposed LFE module solves this problem by aggregating local features with decreasing dilation factor. We tested our network on three remote sensing datasets and acquired remarkably good results for all datasets especially for small objects

    Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers

    Full text link
    Scene parsing, or semantic segmentation, consists in labeling each pixel in an image with the category of the object it belongs to. It is a challenging task that involves the simultaneous detection, segmentation and recognition of all the objects in the image. The scene parsing method proposed here starts by computing a tree of segments from a graph of pixel dissimilarities. Simultaneously, a set of dense feature vectors is computed which encodes regions of multiple sizes centered on each pixel. The feature extractor is a multiscale convolutional network trained from raw pixels. The feature vectors associated with the segments covered by each node in the tree are aggregated and fed to a classifier which produces an estimate of the distribution of object categories contained in the segment. A subset of tree nodes that cover the image are then selected so as to maximize the average "purity" of the class distributions, hence maximizing the overall likelihood that each segment will contain a single object. The convolutional network feature extractor is trained end-to-end from raw pixels, alleviating the need for engineered features. After training, the system is parameter free. The system yields record accuracies on the Stanford Background Dataset (8 classes), the Sift Flow Dataset (33 classes) and the Barcelona Dataset (170 classes) while being an order of magnitude faster than competing approaches, producing a 320 \times 240 image labeling in less than 1 second.Comment: 9 pages, 4 figures - Published in 29th International Conference on Machine Learning (ICML 2012), Jun 2012, Edinburgh, United Kingdo

    Deep Learning for Semantic Part Segmentation with High-Level Guidance

    Full text link
    In this work we address the task of segmenting an object into its parts, or semantic part segmentation. We start by adapting a state-of-the-art semantic segmentation system to this task, and show that a combination of a fully-convolutional Deep CNN system coupled with Dense CRF labelling provides excellent results for a broad range of object categories. Still, this approach remains agnostic to high-level constraints between object parts. We introduce such prior information by means of the Restricted Boltzmann Machine, adapted to our task and train our model in an discriminative fashion, as a hidden CRF, demonstrating that prior information can yield additional improvements. We also investigate the performance of our approach ``in the wild'', without information concerning the objects' bounding boxes, using an object detector to guide a multi-scale segmentation scheme. We evaluate the performance of our approach on the Penn-Fudan and LFW datasets for the tasks of pedestrian parsing and face labelling respectively. We show superior performance with respect to competitive methods that have been extensively engineered on these benchmarks, as well as realistic qualitative results on part segmentation, even for occluded or deformable objects. We also provide quantitative and extensive qualitative results on three classes from the PASCAL Parts dataset. Finally, we show that our multi-scale segmentation scheme can boost accuracy, recovering segmentations for finer parts.Comment: 11 pages (including references), 3 figures, 2 table
    • …
    corecore