18,408 research outputs found

    Predictive Encoding of Contextual Relationships for Perceptual Inference, Interpolation and Prediction

    Full text link
    We propose a new neurally-inspired model that can learn to encode the global relationship context of visual events across time and space and to use the contextual information to modulate the analysis by synthesis process in a predictive coding framework. The model learns latent contextual representations by maximizing the predictability of visual events based on local and global contextual information through both top-down and bottom-up processes. In contrast to standard predictive coding models, the prediction error in this model is used to update the contextual representation but does not alter the feedforward input for the next layer, and is thus more consistent with neurophysiological observations. We establish the computational feasibility of this model by demonstrating its ability in several aspects. We show that our model can outperform state-of-art performances of gated Boltzmann machines (GBM) in estimation of contextual information. Our model can also interpolate missing events or predict future events in image sequences while simultaneously estimating contextual information. We show it achieves state-of-art performances in terms of prediction accuracy in a variety of tasks and possesses the ability to interpolate missing frames, a function that is lacking in GBM

    Discovering Cyclic Causal Models with Latent Variables: A General SAT-Based Procedure

    Get PDF
    We present a very general approach to learning the structure of causal models based on d-separation constraints, obtained from any given set of overlapping passive observational or experimental data sets. The procedure allows for both directed cycles (feedback loops) and the presence of latent variables. Our approach is based on a logical representation of causal pathways, which permits the integration of quite general background knowledge, and inference is performed using a Boolean satisfiability (SAT) solver. The procedure is complete in that it exhausts the available information on whether any given edge can be determined to be present or absent, and returns "unknown" otherwise. Many existing constraint-based causal discovery algorithms can be seen as special cases, tailored to circumstances in which one or more restricting assumptions apply. Simulations illustrate the effect of these assumptions on discovery and how the present algorithm scales.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Memory Structure and Cognitive Maps

    Get PDF
    A common way to understand memory structures in the cognitive sciences is as a cognitive map​. Cognitive maps are representational systems organized by dimensions shared with physical space. The appeal to these maps begins literally: as an account of how spatial information is represented and used to inform spatial navigation. Invocations of cognitive maps, however, are often more ambitious; cognitive maps are meant to scale up and provide the basis for our more sophisticated memory capacities. The extension is not meant to be metaphorical, but the way in which these richer mental structures are supposed to remain map-like is rarely made explicit. Here we investigate this missing link, asking: how do cognitive maps represent non-spatial information?​ We begin with a survey of foundational work on spatial cognitive maps and then provide a comparative review of alternative, non-spatial representational structures. We then turn to several cutting-edge projects that are engaged in the task of scaling up cognitive maps so as to accommodate non-spatial information: first, on the spatial-isometric approach​ , encoding content that is non-spatial but in some sense isomorphic to spatial content; second, on the ​ abstraction approach​ , encoding content that is an abstraction over first-order spatial information; and third, on the ​ embedding approach​ , embedding non-spatial information within a spatial context, a prominent example being the Method-of-Loci. Putting these cases alongside one another reveals the variety of options available for building cognitive maps, and the distinctive limitations of each. We conclude by reflecting on where these results take us in terms of understanding the place of cognitive maps in memory

    Intervening to improve outcomes for vulnerable young people : a review of the evidence

    Get PDF
    Concerns about the number of young people who fail to reach their potential at school, or get into trouble, or are not in education, employment or training (NEET), underpin the continuing commitment to end child poverty in the UK by 2020, and the Coalition Government’s pledge to increase the focus on supporting the neediest families and those with multiple problems. A strong policy commitment to improving the life chances of vulnerable young people has in recent years led to the testing of a number of initiatives. This review sought to identify: the common barriers to the effective implementation of new initiatives; elements of effective practice in the delivery of multi-agency services for vulnerable young people and their families; the costs associated with integrated service delivery; the outcomes that can be achieved; and whether fewer and more targeted initiatives might offer better value for money, particularly during a period of fiscal reform. Includes: •Introduction to the Review •Identifying and Assessing Vulnerable Young People •Multi-Agency Working: Innovations in the Delivery of Support Services •Delivering Interventions and Improving Outcomes for Young People •Assessing Value for Money in Interventions To Improve Outcomes for Young People •Looking to the Future: Defining Elements of Effective Practic
    • …
    corecore