832 research outputs found

    Blockchain-enabled resource management and sharing for 6G communications

    Get PDF
    The sixth-generation (6G) network must provide performance superior to previous generations to meet the requirements of emerging services and applications, such as multi-gigabit transmission rate, even higher reliability, and sub 1 ms latency and ubiquitous connection for the Internet of Everything (IoE). However, with the scarcity of spectrum resources, efficient resource management and sharing are crucial to achieving all these ambitious requirements. One possible technology to achieve all this is the blockchain. Because of its inherent properties, the blockchain has recently gained an important position, which is of great significance to 6G network and other networks. In particular, the integration of the blockchain in 6G will enable the network to monitor and manage resource utilization and sharing efficiently. Hence, in this paper, we discuss the potentials of the blockchain for resource management and sharing in 6G using multiple application scenarios, namely, Internet of things, device-to-device communications, network slicing, and inter-domain blockchain ecosystems

    Five Facets of 6G: Research Challenges and Opportunities

    Full text link
    Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components
    • …
    corecore