1,548 research outputs found

    Using ICESAT\u27s geoscience laser altimeter system to assess large scale forest disturbance caused by Hurricane Katrina

    Get PDF
    We assessed the use of GLAS data as a tool to quantify large-scale forest damage. GLAS data for the year prior to and following Hurricane Katrina were compared to wind speed, forest cover, and MODIS NPV maps to analyze senor sampling, and changes in mean canopy height. We detected significant losses in mean canopy height post-Katrina that increased with wind intensity, from ∟.5m in forests hit by tropical storm winds to ∟4m in forests experiencing category two force winds. Season of data acquisition was shown to influence calculations of mean canopy height. There was insufficient sampling to adequately detect changes at one degree resolution and less. We observed a strong relationship between delta NPV and post storm mean canopy heights. Changes in structure were converted into loss of standing carbon estimates using a height structured ecosystem model, yielding above ground carbon storage losses of ∟30Tg over the domain

    Doctor of Philosophy

    Get PDF
    dissertationWith increasing wildfire activity throughout the western United States comes an increased need for wildland firefighters to protect civilians, structures, and public resources. In order to mitigate threats to their safety, firefighters employ the use of safety zones (SZ: areas where firefighters are free from harm) and escape routes (ER: pathways for accessing SZ). Currently, SZ and ER are designated by firefighters based on ground-level information, the interpretation of which can be error-prone. This research aims to provide robust methods to assist in the ER and SZ evaluation processes, using remote sensing and geospatial modeling. In particular, I investigate the degree to which lidar can be used to characterize the landscape conditions that directly affect SZ and ER quality. I present a new metric and lidar-based algorithm for evaluating SZ based on zone geometry, surrounding vegetation height, and number of firefighters present. The resulting map contains a depiction of potential SZ throughout Tahoe National Forest, each of which has a value that indicates its wind- and slope-dependent suitability. I then inquire into the effects of three landscape conditions on travel rates for the purpose of developing a geospatial ER optimization model. I compare experimentally-derived travel rates to lidar-derived estimates of slope, vegetation density, and ground surface roughness, finding that vegetation density had the strongest negative effect. Relative travel impedances are then mapped throughout Levan Wildlife Management Area and combined with a route-finding algorithm, enabling the identification of maximally-efficient escape routes between any two known locations. Lastly, I explore a number of variables that can affect the accurate characterization of understory vegetation density, finding lidar pulse density, overstory vegetation density, and canopy height all had significant effects. In addition, I compare two widely-used metrics for understory density estimation, overall relative point density and normalized relative point density, finding that the latter possessed far superior predictive power. This research provides novel insight into the potential use of lidar in wildland firefighter safety planning. There are a number of constraints to widespread implementation, some of which are temporary, such as the current lack of nationwide lidar data, and some of which require continued study, such as refining our ability to characterize understory vegetation conditions. However, this research is an important step forward in a direction that has potential to greatly improve the safety of those who put themselves at risk to ensure the safety of life and property

    Remote Sensing for Monitoring the Mountaintop Mining Landscape: Applications for Land Cover Mapping at the Individual Mine Complex Scale

    Get PDF
    The aim of this dissertation was to investigate the potential for mapping land cover associated with mountaintop mining in Southern West Virginia using high spatial resolution aerial- and satellite-based multispectral imagery, as well as light detection and ranging (LiDAR) elevation data and terrain derivatives. The following research themes were explored: comparing aerial- and satellite-based imagery, combining data sets of multiple dates and types, incorporating measures of texture, using nonparametric, machine learning classification algorithms, and employing a geographical object-based image analysis (GEOBIA) framework. This research is presented as four interrelated manuscripts.;In a comparison of aerial National Agriculture Imagery Program (NAIP) orthophotography and satellite-based RapidEye data, the aerial imagery was found to provide statistically less accurate classifications of land cover. These lower accuracies are most likely due to inconsistent viewing geometry and radiometric normalization associated with the aerial imagery. Nevertheless, NAIP orthophotography has many characteristics that make it useful for surface mine mapping and monitoring, including its availability for multiple years, a general lack of cloud cover, contiguous coverage of large areas, ease of availability, and low cost. The lower accuracies of the NAIP classifications were somewhat remediated by decreasing the spatial resolution and reducing the number of classes mapped.;Combining LiDAR with multispectral imagery statistically improved the classification of mining and mine reclamation land cover in comparison to only using multispectral data for both pixel-based and GEOBIA classification. This suggests that the reduced spectral resolution of high spatial resolution data can be combated by incorporating data from another sensor.;Generally, the support vector machines (SVM) algorithm provided higher classification accuracies in comparison to random forests (RF) and boosted classification and regression trees (CART) for both pixel-based and GEOBIA classification. It also outperformed k-nearest neighbor, the algorithm commonly used for GEOBIA classification. However, optimizing user-defined parameters for the SVM algorithm tends to be more complex in comparison to the other algorithms. In particular, RF has fewer parameters, and the program seems robust regarding the parameter settings. RF also offers measures to assess model performance, such as estimates of variable importance and overall accuracy.;Textural measures were found to be of marginal value for pixel-based classification. For GEOBIA, neither measures of texture nor object-specific geometry improved the classification accuracy. Notably, the incorporation of additional information from LiDAR provided a greater improvement in classification accuracy then deriving complex textural and geometric measures.;Pre- and post-mining terrain data classified using GEOBIA and machine learning algorithms resulted in significantly more accurate differentiation of mine-reclaimed and non-mining grasslands than was possible with spectral data. The combination of pre- and post-mining terrain data or just pre-mining data generally outperformed post-mining data. Elevation change data were shown to be of particular value, as were terrain shape parameters. GEOBIA was a valuable tool for combining data collected using different sensors and gridded at variable cell sizes, and machine learning algorithms were particularly useful for incorporating the ancillary data derived from the digital elevation models (DEMs), since these most likely would not have met the basic assumptions of multivariate normality required for parametric classifiers.;Collectively, this research suggests that high spatial resolution remotely sensed data are valuable for mapping and monitoring surface mining and mine reclamation, especially when elevation and spectral data are combined. Machine learning algorithms and GEOBIA are useful for integrating such diverse data

    REMOTE DETECTION OF EPHEMERAL WETLANDS IN MID- ATLANTIC COASTAL PLAIN ECOREGIONS: LIDAR AND HIGH-THROUGHPUT COMPUTING

    Get PDF
    Ephemeral wetlands are ecologically important freshwater ecosystems that occur frequently throughout the Atlantic coastal plain ecoregions of North America. Despite the growing consensus of their importance and imperilment, these systems historically have not been a national conservation priority. They are often cryptic on the landscape and methods to detect ephemeral wetlands remotely have been ineffective at the landscape scales necessary for conservation planning and resource management. Therefore, this study fills information gaps by employing high-resolution light detection and ranging (LiDAR) data to create local relief models that elucidate small localized changes in concavity. Relief models were then processed with local indicators of spatial association (LISA) in order to automate their detection by measuring autocorrelation among model indices. Following model development and data processing, field validation of 114 predicted wetland locations was conducted using a random stratified design proportional to landcover, to measure model commission (ι) and omission (β) error rates. Wetland locations were correctly predicted at 85% of visited sites with ι error rate = 15% and β error rate = 5%. These results suggest that devised local relief models captured small geomorphologic changes that successfully predict ephemeral wetland boundaries in low-relief ecosystems. Small wetlands are often centers of biodiversity in forested landscapes and this analysis will facilitate their detection, the first step towards long-term management

    An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery

    Full text link
    [EN] Mapping forest structure variables provides important information for the estimation of forest biomass, carbon stocks, pasture suitability or for wildfire risk prevention and control. The optimization of the prediction models of these variables requires an adequate stratification of the forest landscape in order to create specific models for each structural type or strata. This paper aims to propose and validate the use of an object-oriented classification methodology based on low-density LiDAR data (0.5 m−2) available at national level, WorldView-2 and Sentinel-2 multispectral imagery to categorize Mediterranean forests in generic structural types. After preprocessing the data sets, the area was segmented using a multiresolution algorithm, features describing 3D vertical structure were extracted from LiDAR data and spectral and texture features from satellite images. Objects were classified after feature selection in the following structural classes: grasslands, shrubs, forest (without shrubs), mixed forest (trees and shrubs) and dense young forest. Four classification algorithms (C4.5 decision trees, random forest, k-nearest neighbour and support vector machine) were evaluated using cross-validation techniques. The results show that the integration of low-density LiDAR and multispectral imagery provide a set of complementary features that improve the results (90.75% overall accuracy), and the object-oriented classification techniques are efficient for stratification of Mediterranean forest areas in structural- and fuel-related categories. Further work will be focused on the creation and validation of a different prediction model adapted to the various strata.This work was supported by the Spanish Ministerio de Economia y Competitividad and FEDER under [grant number CGL2013-46387-C2-1-R]; Fondo de Garantia Juvenil under [contract number PEJ-2014-A-45358].Ruiz FernĂĄndez, LÁ.; Recio Recio, JA.; Crespo-Peremarch, P.; Sapena, M. (2018). An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery. Geocarto International. 33(5):443-457. https://doi.org/10.1080/10106049.2016.1265595S44345733

    Understanding Hydroclimatic Controls on Stream Network Dynamics using LiDAR Data

    Get PDF
    This dissertation investigates the hydroclimatic controls on drainage network dynamics and characterizes the variation of drainage density in various climate regions. The methods were developed to extract the valley and wet channel networks based on Light Detection and Ranging (LiDAR) data including the elevation and intensity of laser returns. The study watersheds were selected based on the availability of streamflow observations and LiDAR data. Climate aridity index was used as a quantitative indicator for climate. The climate controls on drainage density were re-visited using watersheds with minimal anthropogenic interferences and compared with the U-shape relationship reported in the previous studies. A curvature-based method was developed to extract a valley network from 1-m LiDAR-based Digital Elevation Models. The relationship between drainage density and climate aridity index showed a monotonic increasing trend and the discrepancy was explained by human interventions and underestimated drainage density due to the coarse spatial resolution (30-meter) of the topographic maps used in previous research. Observations of wet channel networks are limited, especially in headwater catchments in comparison with the importance of stream network expansion and contraction. A systematic method was developed to extract wet channel networks based on the signal intensities of LiDAR ground returns, which are lower on water surfaces than on dry surfaces. The frequency distributions of intensities associated with wet surface and dry surface returns were constructed. With the aid of LiDAR-based ground elevations, signal intensity thresholds were identified for extracting wet channels. The developed method was applied to Lake Tahoe area during recession periods in five watersheds. A power-law relationship between streamflow and wet channel length was obtained and the scaling exponent was consistent with the reported findings from field work in other regions. Perennial streams flow for the most of the time during normal years and are usually defined based on a flow duration threshold. The streamflow characteristics of perennial streams in this research were assessed using the relationship between streamflow exceedance probability and wet channel ratio based on wet channel networks extracted from LiDAR data. Non-dimensional analysis based on the relationship between streamflow exceedance probability and wet channel ratio showed that results were consistent with previous research about perennial stream definition, and provided the possibility to use wet channel ratio to define perennial streams. Wetlands are important natural resources and need to be monitored regularly in order to understand their inundation dynamics, function and health. Wetland mapping is a key part of monitoring programs. A framework for detecting wetland was developed based on LiDAR elevation and intensity information. After masking out densely vegetated areas, wet areas were identified based on signal intensity of ground returns for barrier islands in East-Central Florida. The intensity threshold of wet surface was identified by decomposing composite probability distribution functions using a Gamma mixture model and the Expectation-Maximization algorithm. This method showed good potential for wetland mapping. The methodology developed in this dissertation demonstrated that incorporating LiDAR data into the drainage networks, stream network dynamics and wetlands results in enhanced understanding of hydroclimatic controls on stream network dynamics. LiDAR data provide a rich information source including elevation and intensity, and are of great benefit to hydrologic research community

    Using Remote Data Mining on LIDAR and Imagery Fusion Data to Develop Land Cover Maps

    Get PDF
    Remote sensing based on imagery has traditionally been the main tool used to extract land uses and land cover (LULC) maps. However, more powerful tools are needed in order to fulfill organizations requirements. Thus, this work explores the joint use of orthophotography and LIDAR with the application of intelligent techniques for rapid and efficient LULC map generation. In particular, five types of LULC have been studied for a northern area in Spain, extracting 63 features. Subsequently, a comparison of two well-known supervised learning algorithms is performed, showing that C4.5 substantially outperforms a classical remote sensing classifier (PCA combined with Naive Bayes). This fact has also been tested by means of the non-parametric Wilcoxon statistical test. Finally, the C4.5 is applied to construct a model which, with a resolution of 1 m 2, obtained precisions between 81% and 93%

    Using airborne LiDAR Survey to explore historic-era archaeological landscapes of Montserrat in the eastern Caribbean

    Get PDF
    This article describes what appears to be the first archaeological application of airborne LiDAR survey to historic-era landscapes in the Caribbean archipelago, on the island of Montserrat. LiDAR is proving invaluable in extending the reach of traditional pedestrian survey into less favorable areas, such as those covered by dense neotropical forest and by ashfall from the past two decades of active eruptions by the Soufrière Hills volcano, and to sites in localities that are inaccessible on account of volcanic dangers. Emphasis is placed on two aspects of the research: first, the importance of ongoing, real-time interaction between the LiDAR analyst and the archaeological team in the field; and second, the advantages of exploiting the full potential of the three-dimensional LiDAR point cloud data for purposes of the visualization of archaeological sites and features
    • …
    corecore