601,088 research outputs found

    Maintenance Knowledge Management with Fusion of CMMS and CM

    Get PDF
    Abstract- Maintenance can be considered as an information, knowledge processing and management system. The management of knowledge resources in maintenance is a relatively new issue compared to Computerized Maintenance Management Systems (CMMS) and Condition Monitoring (CM) approaches and systems. Information Communication technologies (ICT) systems including CMMS, CM and enterprise administrative systems amongst others are effective in supplying data and in some cases information. In order to be effective the availability of high-quality knowledge, skills and expertise are needed for effective analysis and decision-making based on the supplied information and data. Information and data are not by themselves enough, knowledge, experience and skills are the key factors when maximizing the usability of the collected data and information. Thus, effective knowledge management (KM) is growing in importance, especially in advanced processes and management of advanced and expensive assets. Therefore efforts to successfully integrate maintenance knowledge management processes with accurate information from CMMSs and CM systems will be vital due to the increasing complexities of the overall systems. Low maintenance effectiveness costs money and resources since normal and stable production cannot be upheld and maintained over time, lowered maintenance effectiveness can have a substantial impact on the organizations ability to obtain stable flows of income and control costs in the overall process. Ineffective maintenance is often dependent on faulty decisions, mistakes due to lack of experience and lack of functional systems for effective information exchange [10]. Thus, access to knowledge, experience and skills resources in combination with functional collaboration structures can be regarded as vital components for a high maintenance effectiveness solution. Maintenance effectiveness depends in part on the quality, timeliness, accuracy and completeness of information related to machine degradation state, based on which decisions are made. Maintenance effectiveness, to a large extent, also depends on the quality of the knowledge of the managers and maintenance operators and the effectiveness of the internal & external collaborative environments. With emergence of intelligent sensors to measure and monitor the health state of the component and gradual implementation of ICT) in organizations, the conceptualization and implementation of E-Maintenance is turning into a reality. Unfortunately, even though knowledge management aspects are important in maintenance, the integration of KM aspects has still to find its place in E-Maintenance and in the overall information flows of larger-scale maintenance solutions. Nowadays, two main systems are implemented in most maintenance departments: Firstly, Computer Maintenance Management Systems (CMMS), the core of traditional maintenance record-keeping practices that often facilitate the usage of textual descriptions of faults and actions performed on an asset. Secondly, condition monitoring systems (CMS). Recently developed (CMS) are capable of directly monitoring asset components parameters; however, attempts to link observed CMMS events to CM sensor measurements have been limited in their approach and scalability. In this article we present one approach for addressing this challenge. We argue that understanding the requirements and constraints in conjunction - from maintenance, knowledge management and ICT perspectives - is necessary. We identify the issues that need be addressed for achieving successful integration of such disparate data types and processes (also integrating knowledge management into the “data types” and processes)

    Social Learning Systems: The Design of Evolutionary, Highly Scalable, Socially Curated Knowledge Systems

    Get PDF
    In recent times, great strides have been made towards the advancement of automated reasoning and knowledge management applications, along with their associated methodologies. The introduction of the World Wide Web peaked academicians’ interest in harnessing the power of linked, online documents for the purpose of developing machine learning corpora, providing dynamical knowledge bases for question answering systems, fueling automated entity extraction applications, and performing graph analytic evaluations, such as uncovering the inherent structural semantics of linked pages. Even more recently, substantial attention in the wider computer science and information systems disciplines has been focused on the evolving study of social computing phenomena, primarily those associated with the use, development, and analysis of online social networks (OSN\u27s). This work followed an independent effort to develop an evolutionary knowledge management system, and outlines a model for integrating the wisdom of the crowd into the process of collecting, analyzing, and curating data for dynamical knowledge systems. Throughout, we examine how relational data modeling, automated reasoning, crowdsourcing, and social curation techniques have been exploited to extend the utility of web-based, transactional knowledge management systems, creating a new breed of knowledge-based system in the process: the Social Learning System (SLS). The key questions this work has explored by way of elucidating the SLS model include considerations for 1) how it is possible to unify Web and OSN mining techniques to conform to a versatile, structured, and computationally-efficient ontological framework, and 2) how large-scale knowledge projects may incorporate tiered collaborative editing systems in an effort to elicit knowledge contributions and curation activities from a diverse, participatory audience

    THE KNOWLEDGE-GAP REDUCTION IN SOFTWARE ENGINEERING

    Get PDF
    Many papers proposed in the software engineering and information systems literature are dedicated to analysis of software projects missing their schedules, exceeding their budgets, delivering software products with poor quality and in some cases even wrong functionality. The expression “software crisis” has been coined since the late 60’s to illustrate this phenomenon. Various solutions has been proposed by academics and practitioners in order to deal with the software crisis, counter these trends and improve productivity and software quality. Such solutions recommend software process improvement as the best way to build software products needed by modern organizations. Among the well-known solutions, many are based either on software development tools or on software development approaches, methods, processes, and notations. Nevertheless, the scope of these solutions seems to be limited and the improvements they provide are often not significant. We think that since software artifacts are accumulation of knowledge owned by organizational stakeholders, the software crisis is due to a knowledge gap between resulting from the discrepancy between the knowledge integrated in software systems and the knowledge owned by organizational actors. In particular, integrating knowledge management in software development process permits reducing the knowledge gap through building software products which reflect at least partly the organization’s know-how. In this paper, we propose a framework which provides a definition of knowledge based on information systems architecture and describes how to deal with the knowledge gap of a knowledge oriented software development process which may help organizations in reducing the software crisis impacts

    Optimal and intelligent decision making in sustainable development of electronic products

    Get PDF
    Increasing global population and consumption are causing declining natural and social systems. Multi-lifecycle engineering and sustainable development address these issues by integrating strategies for economic successes, environmental quality, and social equity. Based on multi-lifecycle engineering and sustainable development concepts, this doctoral dissertation aims to provide decision making approaches to growing a strong industrial economy while maintaining a clean, healthy environment. The research develops a methodology to complete both the disassembly leveling and bin assignment decisions in demanufacturing through balancing the disassembly efforts, value returns, and environmental impacts. The proposed method is successfully implemented into a demanufacturing module of a Multi-LifeCycle Assessment and Analysis tool. The methodology is illustrated by a computer product example. Since products during the use stage may experience very different conditions, their external and internal status can vary significantly. These products, when coming to a demanufacturing facility, are often associated with incomplete/imprecise information, which complicates demanufacturing process decision making. In order to deal with uncertain information, this research proposes Fuzzy Reasoning Petri nets to model and reason knowledge-based systems and successfully applies them to demanufacturing process decision making to obtain the maximal End-of-Life (BOL) value from discarded products. Besides the BOL management of products by means of product/material recovery to decrease environmental impacts, the concepts of design for environment and sustainable development are investigated. Based on Sustainability Target Method, a sensitivity analysis decision-making method is proposed. It provides a company with suggestions to improve its product\u27s sustainability in the most cost-effective manner

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine
    corecore