488 research outputs found

    Reconstructing vectorised photographic images

    Get PDF
    We address the problem of representing captured images in the continuous mathematical space more usually associated with certain forms of drawn ('vector') images. Such an image is resolution-independent so can be used as a master for varying resolution-specific formats. We briefly describe the main features of a vectorising codec for photographic images, whose significance is that drawing programs can access images and image components as first-class vector objects. This paper focuses on the problem of rendering from the isochromic contour form of a vectorised image and demonstrates a new fill algorithm which could also be used in drawing generally. The fill method is described in terms of level set diffusion equations for clarity. Finally we show that image warping is both simplified and enhanced in this form and that we can demonstrate real histogram equalisation with genuinely rectangular histograms

    Mixing in turbulent jets: scalar measures and isosurface geometry

    Get PDF
    Experiments have been conducted to investigate mixing and the geometry of scalar isosurfaces in turbulent jets. Specifically, we have obtained high-resolution, high-signal-to-noise-ratio images of the jet-fluid concentration in the far field of round, liquid-phase, turbulent jets, in the Reynolds number range 4.5 × 10^3 ≤ Re ≤ 18 × 10^3, using laser-induced-fluorescence imaging techniques. Analysis of these data indicates that this Reynolds-number range spans a mixing transition in the far field of turbulent jets. This is manifested in the probability-density function of the scalar field, as well as in measures of the scalar isosurfaces. Classical as well as fractal measures of these isosurfaces have been computed, from small to large spatial scales, and are found to be functions of both scalar threshold and Reynolds number. The coverage of level sets of jet-fluid concentration in the two-dimensional images is found to possess a scale-dependent-fractal dimension that increases continuously with increasing scale, from near unity, at the smallest scales, to 2, at the largest scales. The geometry of the scalar isosurfaces is, therefore, more complex than power-law fractal, exhibiting an increasing complexity with increasing scale. This behaviour necessitates a scale-dependent generalization of power-law-fractal geometry. A connection between scale-dependent-fractal geometry and the distribution of scales is established and used to compute the distribution of spatial scales in the flow

    Measuring Visual Complexity of Cluster-Based Visualizations

    Full text link
    Handling visual complexity is a challenging problem in visualization owing to the subjectiveness of its definition and the difficulty in devising generalizable quantitative metrics. In this paper we address this challenge by measuring the visual complexity of two common forms of cluster-based visualizations: scatter plots and parallel coordinatess. We conceptualize visual complexity as a form of visual uncertainty, which is a measure of the degree of difficulty for humans to interpret a visual representation correctly. We propose an algorithm for estimating visual complexity for the aforementioned visualizations using Allen's interval algebra. We first establish a set of primitive 2-cluster cases in scatter plots and another set for parallel coordinatess based on symmetric isomorphism. We confirm that both are the minimal sets and verify the correctness of their members computationally. We score the uncertainty of each primitive case based on its topological properties, including the existence of overlapping regions, splitting regions and meeting points or edges. We compare a few optional scoring schemes against a set of subjective scores by humans, and identify the one that is the most consistent with the subjective scores. Finally, we extend the 2-cluster measure to k-cluster measure as a general purpose estimator of visual complexity for these two forms of cluster-based visualization

    Local and global gestalt laws: A neurally based spectral approach

    Get PDF
    A mathematical model of figure-ground articulation is presented, taking into account both local and global gestalt laws. The model is compatible with the functional architecture of the primary visual cortex (V1). Particularly the local gestalt law of good continuity is described by means of suitable connectivity kernels, that are derived from Lie group theory and are neurally implemented in long range connectivity in V1. Different kernels are compatible with the geometric structure of cortical connectivity and they are derived as the fundamental solutions of the Fokker Planck, the Sub-Riemannian Laplacian and the isotropic Laplacian equations. The kernels are used to construct matrices of connectivity among the features present in a visual stimulus. Global gestalt constraints are then introduced in terms of spectral analysis of the connectivity matrix, showing that this processing can be cortically implemented in V1 by mean field neural equations. This analysis performs grouping of local features and individuates perceptual units with the highest saliency. Numerical simulations are performed and results are obtained applying the technique to a number of stimuli.Comment: submitted to Neural Computatio

    Hierarchical Structure of Magnetohydrodynamic Turbulence In Position-Position-Velocity Space

    Get PDF
    Magnetohydrodynamic turbulence is able to create hierarchical structures in the interstellar medium that are correlated on a wide range of scales via the energy cascade. We use hierarchical tree diagrams known as dendrograms to characterize structures in synthetic Position-Position-Velocity (PPV) emission cubes of optically thin isothermal magnetohydrodynamic turbulence. We show that the structures and degree of hierarchy observed in PPV space are related to the physics of the gas, i.e. self-gravity and the global sonic and Alfvenic Mach number. Simulations with higher Alfvenic Mach number, self-gravity and supersonic flows display enhanced hierarchical structure. We observed a strong sonic and Alfvenic dependency when we apply the the statistical moments (i.e. mean, variance, skewness, kurtosis) to the dendrogram distribution. Larger magnetic field and sonic Mach number correspond to larger values of the moments. Application of the dendrogram to 3D density cubes, also known as Position-Position-Position cubes (PPP), reveals that the dominant emission contours in PPP and PPV are related for supersonic gas but not for subsonic. We also explore the effects of smoothing, thermal broadening and velocity resolution on the dendrograms in order to make our study more applicable to observational data. These results all point to hierarchical tree diagrams as being a promising additional tool for studying ISM turbulence and star forming regions in the direction of obtaining information on the degree of self-gravity, the Mach numbers and the complicated relationship between PPV and PPP.Comment: submitted to Ap

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus
    • …
    corecore