225 research outputs found

    Reputation-Based Internet Protocol Security: A Multilayer Security Framework for Mobil Ad Hoc Networks

    Get PDF
    This research effort examines the theory, application, and results for a Reputation-based Internet Protocol Security (RIPSec) framework that provides security for an ad-hoc network operating in a hostile environment. In RIPSec, protection from external threats is provided in the form of encrypted communication links and encryption-wrapped nodes while internal threats are mitigated by behavior grading that assigns reputations to nodes based on their demonstrated participation in the routing process. Network availability is provided by behavior grading and round-robin multipath routing. If a node behaves faithfully, it earns a positive reputation over time. If a node misbehaves (for any number of reasons, not necessarily intentional), it earns a negative reputation. Each member of the MANET has its own unique and subjective set of Reputation Indexes (RI) that enumerates the perceived reputation of the other MANET nodes. Nodes that desire to send data will eliminate relay nodes they perceive to have a negative reputation during the formulation of a route. A 50-node MANET is simulated with streaming multimedia and varying levels of misbehavior to determine the impact of the framework on network performance. Results of this research were very favorable. Analysis of the simulation data shows the number of routing errors sent in a MANET is reduced by an average of 52% when using RIPSec. The network load is also reduced, decreasing the overall traffic introduced into the MANET and permitting individual nodes to perform more work without overtaxing their limited resources. Finally, throughput is decreased due to larger packet sizes and longer round trips for packets to traverse the MANET, but is still sufficient to pass traffic with high bandwidth requirements (i.e., video and imagery) that is of interest in military networks

    Security management for mobile ad hoc network of networks (MANoN

    Get PDF
    Mobile Ad hoc Network of Networks (MANoN) are a group of large autonomous wireless nodes communicating on a peer-to-peer basis in a heterogeneous environment with no pre-defined infrastructure. In fact, each node by itself is an ad hoc network with its own management. MANoNs are evolvable systems, which mean each ad hoc network has the ability to perform separately under its own policies and management without affecting the main system; therefore, new ad hoc networks can emerge and disconnect from the MANoN without conflicting with the policies of other networks. The unique characteristics of MANoN makes such networks highly vulnerable to security attacks compared with wired networks or even normal mobile ad hoc networks. This thesis presents a novel security-management system based upon the Recommendation ITU-T M.3400, which is used to evaluate, report on the behaviour of our MANoN and then support complex services our system might need to accomplish. Our security management will concentrate on three essential components: Security Administration, Prevention and Detection and Containment and Recovery. In any system, providing one of those components is a problem; consequently, dealing with an infrastructure-less MANoN will be a dilemma, yet we approached each set group of these essentials independently, providing unusual solutions for each one of them but concentrating mainly on the prevention and detection category. The contributions of this research are threefold. First, we defined MANoN Security Architecture based upon the ITU-T Recommendations: X.800 and X.805. This security architecture provides a comprehensive, end-to-end security solution for MANoN that could be applied to every wireless network that satisfies a similar scenario, using such networks in order to predict, detect and correct security vulnerabilities. The security architecture identifies the security requirements needed, their objectives and the means by which they could be applied to every part of the MANoN, taking into consideration the different security attacks it could face. Second, realising the prevention component by implementing some of the security requirements identified in the Security Architecture, such as authentication, authorisation, availability, data confidentiality, data integrity and non-repudiation has been proposed by means of defining a novel Security Access Control Mechanism based on Threshold Cryptography Digital Certificates in MANoN. Network Simulator (NS-2) is a real network environment simulator, which is used to test the performance of the proposed security mechanism and demonstrate its effectiveness. Our ACM-MANoN results provide a fully distributed security protocol that provides a high level of secure, available, scalable, flexible and efficient management services for MANoN. The third contribution is realising the detection component, which is represented by providing a Behavioural Detection Mechanism based on nodes behavioural observation engaged with policies. This behaviour mechanism will be used to detect malicious nodes acting to bring the system down. This approach has been validated using an attacks case study in an unknown military environment to cope with misbehaving nodes

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Reconfigurable middleware architectures for large scale sensor networks

    Get PDF
    Wireless sensor networks, in an effort to be energy efficient, typically lack the high-level abstractions of advanced programming languages. Though strong, the dichotomy between these two paradigms can be overcome. The SENSIX software framework, described in this dissertation, uniquely integrates constraint-dominated wireless sensor networks with the flexibility of object-oriented programming models, without violating the principles of either. Though these two computing paradigms are contradictory in many ways, SENSIX bridges them to yield a dynamic middleware abstraction unifying low-level resource-aware task reconfiguration and high-level object recomposition. Through the layered approach of SENSIX, the software developer creates a domain-specific sensing architecture by defining a customized task specification and utilizing object inheritance. In addition, SENSIX performs better at large scales (on the order of 1000 nodes or more) than other sensor network middleware which do not include such unified facilities for vertical integration
    • …
    corecore