51 research outputs found

    CityGML in the Integration of BIM and the GIS: Challenges and Opportunities

    Get PDF
    CityGML (City Geography Markup Language) is the most investigated standard in the integration of building information modeling (BIM) and the geographic information system (GIS), and it is essential for digital twin and smart city applications. The new CityGML 3.0 has been released for a while, but it is still not clear whether its new features bring new challenges or opportunities to this research topic. Therefore, the aim of this study is to understand the state of the art of CityGML in BIM/GIS integration and to investigate the potential influence of CityGML3.0 on BIM/GIS integration. To achieve this aim, this study used a systematic literature review approach. In total, 136 papers from Web of Science (WoS) and Scopus were collected, reviewed, and analyzed. The main findings of this review are as follows: (1) There are several challenging problems in the IFC-to-CityGML conversion, including LoD (Level of Detail) mapping, solid-to-surface conversion, and semantic mapping. (2) The ‘space’ concept and the new LoD concept in CityGML 3.0 can bring new opportunities to LoD mapping and solid-to-surface conversion. (3) The Versioning module and the Dynamizer module can add dynamic semantics to the CityGML. (4) Graph techniques and scan-to-BIM offer new perspectives for facilitating the use of CityG

    An Introduction to Ontologies and Ontology Engineering

    Get PDF
    In the last decades, the use of ontologies in information systems has become more and more popular in various fields, such as web technologies, database integration, multi agent systems, natural language processing, etc. Artificial intelligent researchers have initially borrowed the word “ontology” from Philosophy, then the word spread in many scientific domain and ontologies are now used in several developments. The main goal of this chapter is to answer generic questions about ontologies, such as: Which are the different kinds of ontologies? What is the purpose of the use of ontologies in an application? Which methods can I use to build an ontology

    Data interoperability of building information modeling and geographic information system in construction industry

    Get PDF
    Application of Building Information Modeling (BIM) in construction industry has been applied for many years back. This because BIM can provide a better advantage in construction industry in term of controlling and managing construction project during their life cycle. The advantages that can be provide by BIM is focusing on the indoor planning tasks. But, when the construction project involves, besides indoor planning, outdoor planning also is important part that need to be look up. To cover the outdoor planning in construction project, Geographic Information System (GIS) need to be applied. GIS can overcome this problem because GIS mainly for outdoor planning by using their spatial analysis. GIS can offer a high degree of geospatial information and can provide the detailed geometrical and semantic information of building to assisted across improve automation. Towards produce the improved preparation in construction project, BIM and GIS should be integrated. To integrate both domains, the data interoperability between them need to be investigate because they used different data standard. This study focusses on solving the data interoperability through the data integration between BIM and GIS to solve the problem of data mismatch and data missing during data translation process. Industry Foundation Classes (IFC) was used as a data standard to perform the data integration between BIM and GIS. The outcomes from this study show that when the data interoperability applied between BIM and GIS, the problem above can be solved, and the data dimension and their coordinate system also can be control

    <em>Google Earth</em> Augmented for Earthwork Construction Planning

    Get PDF
    This chapter introduces GoogleEarthWork which is an augmented geographic information system (GIS) based on Google Earth to manage and visualize heterogeneous site information, especially 3D models, aerial and ground images, panoramas, and GIS data of the site environment. The concept is to realize a highly automated end-to-end earthwork construction planning system that is able to generate project management deliverables from heterogeneous information and enhance the usefulness and intelligence of GIS for better project planning and control in earthwork construction. With identified constraints from the augmented Google Earth, the earthwork planning problem is formulated, and an optimized executable plan can be automatically generated, including work breakdown structure and project network model. Demonstration cases are provided to prove concepts of and illustrate functionalities of GoogleEarthWork in support of earthwork construction planning in realistic settings

    Spatial ontologies for architectural heritage

    Get PDF
    Informatics and artificial intelligence have generated new requirements for digital archiving, information, and documentation. Semantic interoperability has become fundamental for the management and sharing of information. The constraints to data interpretation enable both database interoperability, for data and schemas sharing and reuse, and information retrieval in large datasets. Another challenging issue is the exploitation of automated reasoning possibilities. The solution is the use of domain ontologies as a reference for data modelling in information systems. The architectural heritage (AH) domain is considered in this thesis. The documentation in this field, particularly complex and multifaceted, is well-known to be critical for the preservation, knowledge, and promotion of the monuments. For these reasons, digital inventories, also exploiting standards and new semantic technologies, are developed by international organisations (Getty Institute, ONU, European Union). Geometric and geographic information is essential part of a monument. It is composed by a number of aspects (spatial, topological, and mereological relations; accuracy; multi-scale representation; time; etc.). Currently, geomatics permits the obtaining of very accurate and dense 3D models (possibly enriched with textures) and derived products, in both raster and vector format. Many standards were published for the geographic field or in the cultural heritage domain. However, the first ones are limited in the foreseen representation scales (the maximum is achieved by OGC CityGML), and the semantic values do not consider the full semantic richness of AH. The second ones (especially the core ontology CIDOC – CRM, the Conceptual Reference Model of the Documentation Commettee of the International Council of Museums) were employed to document museums’ objects. Even if it was recently extended to standing buildings and a spatial extension was included, the integration of complex 3D models has not yet been achieved. In this thesis, the aspects (especially spatial issues) to consider in the documentation of monuments are analysed. In the light of them, the OGC CityGML is extended for the management of AH complexity. An approach ‘from the landscape to the detail’ is used, for considering the monument in a wider system, which is essential for analysis and reasoning about such complex objects. An implementation test is conducted on a case study, preferring open source applications

    Integrated topological representation of multi-scale utility resource networks

    Get PDF
    PhD ThesisThe growth of urban areas and their resource consumption presents a significant global challenge. Existing utility resource supply systems are unresponsive, unreliable and costly. There is a need to improve the configuration and management of the infrastructure networks that carry these resources from source to consumer and this is best performed through analysis of multi-scale, integrated digital representations. However, the real-world networks are represented across different datasets that are underpinned by different data standards, practices and assumptions, and are thus challenging to integrate. Existing integration methods focus predominantly on achieving maximum information retention through complex schema mappings and the development of new data standards, and there is strong emphasis on reconciling differences in geometries. However, network topology is of greatest importance for the analysis of utility networks and simulation of utility resource flows because it is a representation of functional connectivity, and the derivation of this topology does not require the preservation of full information detail. The most pressing challenge is asserting the connectivity between the datasets that each represent subnetworks of the entire end-to-end network system. This project presents an approach to integration that makes use of abstracted digital representations of electricity and water networks to infer inter-dataset network connectivity, exploring what can be achieved by exploiting commonalities between existing datasets and data standards to overcome their otherwise inhibiting disparities. The developed methods rely on the use of graph representations, heuristics and spatial inference, and the results are assessed using surveying techniques and statistical analysis of uncertainties. An algorithm developed for water networks was able to correctly infer a building connection that was absent from source datasets. The thesis concludes that several of the key use cases for integrated topological representation of utility networks are partially satisfied through the methods presented, but that some differences in data standardisation and best practice in the GIS and BIM domains prevent full automation. The common and unique identification of real-world objects, agreement on a shared concept vocabulary for the built environment, more accurate positioning of distribution assets, consistent use of (and improved best practice for) georeferencing of BIM models and a standardised numerical expression of data uncertainties are identified as points of development.Engineering and Physical Sciences Research Council Ordnance Surve

    Spatial ontologies for architectural heritage

    Get PDF
    Informatics and artificial intelligence have generated new requirements for digital archiving, information, and documentation. Semantic interoperability has become fundamental for the management and sharing of information. The constraints to data interpretation enable both database interoperability, for data and schemas sharing and reuse, and information retrieval in large datasets. Another challenging issue is the exploitation of automated reasoning possibilities. The solution is the use of domain ontologies as a reference for data modelling in information systems. The architectural heritage (AH) domain is considered in this thesis. The documentation in this field, particularly complex and multifaceted, is well-known to be critical for the preservation, knowledge, and promotion of the monuments. For these reasons, digital inventories, also exploiting standards and new semantic technologies, are developed by international organisations (Getty Institute, ONU, European Union). Geometric and geographic information is essential part of a monument. It is composed by a number of aspects (spatial, topological, and mereological relations; accuracy; multi-scale representation; time; etc.). Currently, geomatics permits the obtaining of very accurate and dense 3D models (possibly enriched with textures) and derived products, in both raster and vector format. Many standards were published for the geographic field or in the cultural heritage domain. However, the first ones are limited in the foreseen representation scales (the maximum is achieved by OGC CityGML), and the semantic values do not consider the full semantic richness of AH. The second ones (especially the core ontology CIDOC – CRM, the Conceptual Reference Model of the Documentation Commettee of the International Council of Museums) were employed to document museums’ objects. Even if it was recently extended to standing buildings and a spatial extension was included, the integration of complex 3D models has not yet been achieved. In this thesis, the aspects (especially spatial issues) to consider in the documentation of monuments are analysed. In the light of them, the OGC CityGML is extended for the management of AH complexity. An approach ‘from the landscape to the detail’ is used, for considering the monument in a wider system, which is essential for analysis and reasoning about such complex objects. An implementation test is conducted on a case study, preferring open source applications
    corecore