1,486 research outputs found

    The Application of Magnetic Sensors in Self-Contained Local Positioning

    Get PDF

    An inertial motion capture framework for constructing body sensor networks

    Get PDF
    Motion capture is the process of measuring and subsequently reconstructing the movement of an animated object or being in virtual space. Virtual reconstructions of human motion play an important role in numerous application areas such as animation, medical science, ergonomics, etc. While optical motion capture systems are the industry standard, inertial body sensor networks are becoming viable alternatives due to portability, practicality and cost. This thesis presents an innovative inertial motion capture framework for constructing body sensor networks through software environments, smartphones and web technologies. The first component of the framework is a unique inertial motion capture software environment aimed at providing an improved experimentation environment, accompanied by programming scaffolding and a driver development kit, for users interested in studying or engineering body sensor networks. The software environment provides a bespoke 3D engine for kinematic motion visualisations and a set of tools for hardware integration. The software environment is used to develop the hardware behind a prototype motion capture suit focused on low-power consumption and hardware-centricity. Additional inertial measurement units, which are available commercially, are also integrated to demonstrate the functionality the software environment while providing the framework with additional sources for motion data. The smartphone is the most ubiquitous computing technology and its worldwide uptake has prompted many advances in wearable inertial sensing technologies. Smartphones contain gyroscopes, accelerometers and magnetometers, a combination of sensors that is commonly found in inertial measurement units. This thesis presents a mobile application that investigates whether the smartphone is capable of inertial motion capture by constructing a novel omnidirectional body sensor network. This thesis proposes a novel use for web technologies through the development of the Motion Cloud, a repository and gateway for inertial data. Web technologies have the potential to replace motion capture file formats with online repositories and to set a new standard for how motion data is stored. From a single inertial measurement unit to a more complex body sensor network, the proposed architecture is extendable and facilitates the integration of any inertial hardware configuration. The Motion Cloud’s data can be accessed through an application-programming interface or through a web portal that provides users with the functionality for visualising and exporting the motion data

    Indoor location based services challenges, requirements and usability of current solutions

    Get PDF
    Indoor Location Based Services (LBS), such as indoor navigation and tracking, still have to deal with both technical and non-technical challenges. For this reason, they have not yet found a prominent position in people’s everyday lives. Reliability and availability of indoor positioning technologies, the availability of up-to-date indoor maps, and privacy concerns associated with location data are some of the biggest challenges to their development. If these challenges were solved, or at least minimized, there would be more penetration into the user market. This paper studies the requirements of LBS applications, through a survey conducted by the authors, identifies the current challenges of indoor LBS, and reviews the available solutions that address the most important challenge, that of providing seamless indoor/outdoor positioning. The paper also looks at the potential of emerging solutions and the technologies that may help to handle this challenge

    Mobility increases localizability: A survey on wireless indoor localization using inertial sensors

    Get PDF

    The Emerging Wearable Solutions in mHealth

    Get PDF
    The marriage of wearable sensors and smartphones have fashioned a foundation for mobile health technologies that enable healthcare to be unimpeded by geographical boundaries. Sweeping efforts are under way to develop a wide variety of smartphone-linked wearable biometric sensors and systems. This chapter reviews recent progress in the field of wearable technologies with a focus on key solutions for fall detection and prevention, Parkinson’s disease assessment and cardiac disease, blood pressure and blood glucose management. In particular, the smartphone-based systems, without any external wearables, are summarized and discussed

    RTST Trend Report: lead theme Contextualisation

    Get PDF
    Specht, M., Börner, D., Tabuenca, B., Ternier, S., De Vries, F., Kalz, M., Drachsler, H., & Schmitz, B. (2012). RTST Trend Report: lead theme Contextualisation. Deliverable 1.7 of STELLAR network of excellence. Heerlen, The Netherlands.In summary this trend-scouting report highlights different design dimensions of contextualizing learning. On the one hand designing educational context: the components and constituents of the educational setting, which also have to be orchestrated in an instructional design or the process of orchestration (Luckin, 2010, Specht, 2009) on the other hand bridging and linking learning contexts for seamless learning support: Wong et al. define design dimensions of seamless learning experiences and which gaps they identify and what challenges must be tackled to create seamless learning experiences (Wong, 2011).STELLAR Network of Excellence, Grant 23191

    Early diagnosis of frailty: Technological and non-intrusive devices for clinical detection

    Get PDF
    This work analyses different concepts for frailty diagnosis based on affordable standard technology such as smartphones or wearable devices. The goal is to provide ideas that go beyond classical diagnostic tools such as magnetic resonance imaging or tomography, thus changing the paradigm; enabling the detection of frailty without expensive facilities, in an ecological way for both patients and medical staff and even with continuous monitoring. Fried's five-point phenotype model of frailty along with a model based on trials and several classical physical tests were used for device classification. This work provides a starting point for future researchers who will have to try to bridge the gap separating elderly people from technology and medical tests in order to provide feasible, accurate and affordable tools for frailty monitoring for a wide range of users.This work was sponsored by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund (ERDF) across projects RTC-2017-6321-1 AEI/FEDER, UE, TEC2016-76021-C2-2-R AEI/FEDER, UE and PID2019-107270RB-C21/AEI/10.13039/501100011033, UE
    • …
    corecore