91,210 research outputs found

    Relation Discovery from Web Data for Competency Management

    Get PDF
    This paper describes a technique for automatically discovering associations between people and expertise from an analysis of very large data sources (including web pages, blogs and emails), using a family of algorithms that perform accurate named-entity recognition, assign different weights to terms according to an analysis of document structure, and access distances between terms in a document. My contribution is to add a social networking approach called BuddyFinder which relies on associations within a large enterprise-wide "buddy list" to help delimit the search space and also to provide a form of 'social triangulation' whereby the system can discover documents from your colleagues that contain pertinent information about you. This work has been influential in the information retrieval community generally, as it is the basis of a landmark system that achieved overall first place in every category in the Enterprise Search Track of TREC2006

    Discrete Fourier Transform Improves the Prediction of the Electronic Properties of Molecules in Quantum Machine Learning

    Full text link
    High-throughput approximations of quantum mechanics calculations and combinatorial experiments have been traditionally used to reduce the search space of possible molecules, drugs and materials. However, the interplay of structural and chemical degrees of freedom introduces enormous complexity, which the current state-of-the-art tools are not yet designed to handle. The availability of large molecular databases generated by quantum mechanics (QM) computations using first principles open new venues for data science to accelerate the discovery of new compounds. In recent years, models that combine QM with machine learning (ML) known as QM/ML models have been successful at delivering the accuracy of QM at the speed of ML. The goals are to develop a framework that will accelerate the extraction of knowledge and to get insights from quantitative process-structure-property-performance relationships hidden in materials data via a better search of the chemical compound space, and to infer new materials with targeted properties. In this study, we show that by integrating well-known signal processing techniques such as discrete Fourier transform in the QM/ML pipeline, the outcomes can be significantly improved in some cases. We also show that the spectrogram of a molecule may represent an interesting molecular visualization tool.Comment: 4 pages, 3 figures, 2 tables. Accepted to present at 32nd IEEE Canadian Conference in Electrical Engineering and Computer Scienc

    Improving the quality of the personalized electronic program guide

    Get PDF
    As Digital TV subscribers are offered more and more channels, it is becoming increasingly difficult for them to locate the right programme information at the right time. The personalized Electronic Programme Guide (pEPG) is one solution to this problem; it leverages artificial intelligence and user profiling techniques to learn about the viewing preferences of individual users in order to compile personalized viewing guides that fit their individual preferences. Very often the limited availability of profiling information is a key limiting factor in such personalized recommender systems. For example, it is well known that collaborative filtering approaches suffer significantly from the sparsity problem, which exists because the expected item-overlap between profiles is usually very low. In this article we address the sparsity problem in the Digital TV domain. We propose the use of data mining techniques as a way of supplementing meagre ratings-based profile knowledge with additional item-similarity knowledge that can be automatically discovered by mining user profiles. We argue that this new similarity knowledge can significantly enhance the performance of a recommender system in even the sparsest of profile spaces. Moreover, we provide an extensive evaluation of our approach using two large-scale, state-of-the-art online systems—PTVPlus, a personalized TV listings portal and Físchlár, an online digital video library system
    corecore