150 research outputs found

    SIMDAT

    No full text

    Innovative in silico approaches to address avian flu using grid technology

    Get PDF
    The recent years have seen the emergence of diseases which have spread very quickly all around the world either through human travels like SARS or animal migration like avian flu. Among the biggest challenges raised by infectious emerging diseases, one is related to the constant mutation of the viruses which turns them into continuously moving targets for drug and vaccine discovery. Another challenge is related to the early detection and surveillance of the diseases as new cases can appear just anywhere due to the globalization of exchanges and the circulation of people and animals around the earth, as recently demonstrated by the avian flu epidemics. For 3 years now, a collaboration of teams in Europe and Asia has been exploring some innovative in silico approaches to better tackle avian flu taking advantage of the very large computing resources available on international grid infrastructures. Grids were used to study the impact of mutations on the effectiveness of existing drugs against H5N1 and to find potentially new leads active on mutated strains. Grids allow also the integration of distributed data in a completely secured way. The paper presents how we are currently exploring how to integrate the existing data sources towards a global surveillance network for molecular epidemiology.Comment: 7 pages, submitted to Infectious Disorders - Drug Target

    3rd EGEE User Forum

    Get PDF
    We have organized this book in a sequence of chapters, each chapter associated with an application or technical theme introduced by an overview of the contents, and a summary of the main conclusions coming from the Forum for the chapter topic. The first chapter gathers all the plenary session keynote addresses, and following this there is a sequence of chapters covering the application flavoured sessions. These are followed by chapters with the flavour of Computer Science and Grid Technology. The final chapter covers the important number of practical demonstrations and posters exhibited at the Forum. Much of the work presented has a direct link to specific areas of Science, and so we have created a Science Index, presented below. In addition, at the end of this book, we provide a complete list of the institutes and countries involved in the User Forum

    Trends in life science grid: from computing grid to knowledge grid

    Get PDF
    BACKGROUND: Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. RESULTS: This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. CONCLUSION: Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community

    Making distributed computing infrastructures interoperable and accessible for e-scientists at the level of computational workflows

    Get PDF
    As distributed computing infrastructures evolve, and as their take up by user communities is growing, the importance of making different types of infrastructures based on a heterogeneous set of middleware interoperable is becoming crucial. This PhD submission, based on twenty scientific publications, presents a unique solution to the challenge of the seamless interoperation of distributed computing infrastructures at the level of workflows. The submission investigates workflow level interoperation inside a particular workflow system (intra-workflow interoperation), and also between different workflow solutions (inter-workflow interoperation). In both cases the interoperation of workflow component execution and the feeding of data into these components workflow components are considered. The invented and developed framework enables the execution of legacy applications and grid jobs and services on multiple grid systems, the feeding of data from heterogeneous file and data storage solutions to these workflow components, and the embedding of non-native workflows to a hosting meta-workflow. Moreover, the solution provides a high level user interface that enables e-scientist end-users to conveniently access the interoperable grid solutions without requiring them to study or understand the technical details of the underlying infrastructure. The candidate has also developed an application porting methodology that enables the systematic porting of applications to interoperable and interconnected grid infrastructures, and facilitates the exploitation of the above technical framework

    Grid Analysis of Radiological Data

    Get PDF
    IGI-Global Medical Information Science Discoveries Research Award 2009International audienceGrid technologies and infrastructures can contribute to harnessing the full power of computer-aided image analysis into clinical research and practice. Given the volume of data, the sensitivity of medical information, and the joint complexity of medical datasets and computations expected in clinical practice, the challenge is to fill the gap between the grid middleware and the requirements of clinical applications. This chapter reports on the goals, achievements and lessons learned from the AGIR (Grid Analysis of Radiological Data) project. AGIR addresses this challenge through a combined approach. On one hand, leveraging the grid middleware through core grid medical services (data management, responsiveness, compression, and workflows) targets the requirements of medical data processing applications. On the other hand, grid-enabling a panel of applications ranging from algorithmic research to clinical use cases both exploits and drives the development of the services

    1st INCF Workshop on Sustainability of Neuroscience Databases

    Get PDF
    The goal of the workshop was to discuss issues related to the sustainability of neuroscience databases, identify problems and propose solutions, and formulate recommendations to the INCF. The report summarizes the discussions of invited participants from the neuroinformatics community as well as from other disciplines where sustainability issues have already been approached. The recommendations for the INCF involve rating, ranking, and supporting database sustainability
    • 

    corecore