100,884 research outputs found

    Actuator and Sensor Fault Classification for Wind Turbine Systems Based on Fast Fourier Transform and Uncorrelated Multi-Linear Principal Component Analysis Techniques

    Get PDF
    In response to the high demand of the operation reliability and predictive maintenance, health monitoring and fault diagnosis and classification have been paramount for complex industrial systems (e.g., wind turbine energy systems). In this study, data-driven fault diagnosis and fault classification strategies are addressed for wind turbine energy systems under various faulty scenarios. A novel algorithm is addressed by integrating fast Fourier transform and uncorrelated multi-linear principal component analysis techniques in order to achieve effective three-dimensional space visualization for fault diagnosis and classification under a variety of actuator and sensor faulty scenarios in 4.8 MW wind turbine benchmark systems. Moreover, comparison studies are implemented by using multi-linear principal component analysis with and without fast Fourier transform, and uncorrelated multi-linear principal component analysis with and without fast Fourier transformation data pre-processing, respectively. The effectiveness of the proposed algorithm is demonstrated and validated via the wind turbine benchmark

    Waltz - An exploratory visualization tool for volume data, using multiform abstract displays

    Get PDF
    Although, visualization is now widely used, misinterpretations still occur. There are three primary solutions intended to aid a user interpret data correctly. These are: displaying the data in different forms (Multiform visualization); simplifying (or abstracting) the structure of the viewed information; and linking objects and views together (allowing corresponding objects to be jointly manipulated and interrogated). These well-known visualization techniques, provide an emphasis towards the visualization display. We believe however that current visualization systems do not effectively utilise the display, for example, often placing it at the end of a long visualization process. Our visualization system, based on an adapted visualization model, allows a display method to be used throughout the visualization process, in which the user operates a 'Display (correlate) and Refine' visualization cycle. This display integration provides a useful exploration environment, where objects and Views may be directly manipulated; a set of 'portions of interest' can be selected to generate a specialized dataset. This may subsequently be further displayed, manipulated and filtered

    Visual Integration of Data and Model Space in Ensemble Learning

    Full text link
    Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack in comprehensibility, posing a challenge to understand how each model affects the classification outputs and where the errors come from. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce a workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. We then present a use case in which we start with an ensemble automatically selected by a standard ensemble selection algorithm, and show how we can manipulate models and alternative combinations.Comment: 8 pages, 7 picture

    FRIOD: a deeply integrated feature-rich interactive system for effective and efficient outlier detection

    Get PDF
    In this paper, we propose an novel interactive outlier detection system called feature-rich interactive outlier detection (FRIOD), which features a deep integration of human interaction to improve detection performance and greatly streamline the detection process. A user-friendly interactive mechanism is developed to allow easy and intuitive user interaction in all the major stages of the underlying outlier detection algorithm which includes dense cell selection, location-aware distance thresholding, and final top outlier validation. By doing so, we can mitigate the major difficulty of the competitive outlier detection methods in specifying the key parameter values, such as the density and distance thresholds. An innovative optimization approach is also proposed to optimize the grid-based space partitioning, which is a critical step of FRIOD. Such optimization fully considers the high-quality outliers it detects with the aid of human interaction. The experimental evaluation demonstrates that FRIOD can improve the quality of the detected outliers and make the detection process more intuitive, effective, and efficient
    • …
    corecore