498 research outputs found

    BCI controlled robotic arm as assistance to the rehabilitation of neurologically disabled patients

    Get PDF
    This presentation summarises the development of a portable and cost-efficient BCI controlled assistive technology using a non-invasive BCI headset 'OpenBCI' and an open source robotic arm, U-Arm, to accomplish tasks related to rehabilitation, such as access to resources, adaptability or home use. The resulting system used a combination of EEG and EMG sensor readings to control the arm, which could perform a number of different tasks such as picking/placing objects or assist users in eating

    Design of a wearable interface for lightweight robotic arm for people with mobility impairments

    Get PDF
    Many common activities of daily living like open a door or fill a glass of water, which most of us take for granted, could be an insuperable problem for people who have limited mobility or impairments. For years the unique alternative to overcame this limitation was asking for human help. Nowadays thanks to recent studies and technology developments, having an assistive devices to compensate the loss of mobility is becoming a real opportunity. Off-the-shelf assistive robotic manipulators have the capability to improve the life of people with motor impairments. Robotic lightweight arms represent one of the most spread solution, in particular some of them are designed specifically to be mounted on wheelchairs to assist users in performing manipulation tasks. On the other hand, usually their control interface relies on joystick and buttons, making the use very challenging for people affected by impaired motor abilities. In this paper, we present a novel wearable control interface for users with limb mobility impairments. We make use of muscles residual motion capabilities, captured through a Body-Machine Interface based on a combination of head tilt estimation and electromyography signals. The proposed BMI is completely wearable, wireless and does not require frequently long calibrations. Preliminary experiments showed the effectiveness of the proposed system for subjects with motor impairments, allowing them to easily control a robotic arm for activities of daily living

    Kinova modular robot arms for service robotics applications

    Get PDF
    This article presents Kinova's modular robotic systems, including the robots JACO2 and MICO2, actuators and grippers. Kinova designs and manufactures robotics platforms and components that are simple, sexy and safe under two business units: Assistive Robotics empowers people living with disabilities to push beyond their current boundaries and limitations while Service Robotics empowers people in industry to interact with their environment more efficiently and safely. Kinova is based in Boisbriand, Québec, Canada. Its technologies are exploited in over 25 countries and are used in many applications, including as service robotics, physical assistance, medical applications, mobile manipulation, rehabilitation, teleoperation and in research in different areas such as computer vision, artificial intelligence, grasping, planning and control interfaces. The article describes Kinova's hardware platforms, their different control modes (position, velocity and torque), control features and possible control interfaces. Integration to other systems and application examples are also presented

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    In-home and remote use of robotic body surrogates by people with profound motor deficits

    Get PDF
    By controlling robots comparable to the human body, people with profound motor deficits could potentially perform a variety of physical tasks for themselves, improving their quality of life. The extent to which this is achievable has been unclear due to the lack of suitable interfaces by which to control robotic body surrogates and a dearth of studies involving substantial numbers of people with profound motor deficits. We developed a novel, web-based augmented reality interface that enables people with profound motor deficits to remotely control a PR2 mobile manipulator from Willow Garage, which is a human-scale, wheeled robot with two arms. We then conducted two studies to investigate the use of robotic body surrogates. In the first study, 15 novice users with profound motor deficits from across the United States controlled a PR2 in Atlanta, GA to perform a modified Action Research Arm Test (ARAT) and a simulated self-care task. Participants achieved clinically meaningful improvements on the ARAT and 12 of 15 participants (80%) successfully completed the simulated self-care task. Participants agreed that the robotic system was easy to use, was useful, and would provide a meaningful improvement in their lives. In the second study, one expert user with profound motor deficits had free use of a PR2 in his home for seven days. He performed a variety of self-care and household tasks, and also used the robot in novel ways. Taking both studies together, our results suggest that people with profound motor deficits can improve their quality of life using robotic body surrogates, and that they can gain benefit with only low-level robot autonomy and without invasive interfaces. However, methods to reduce the rate of errors and increase operational speed merit further investigation.Comment: 43 Pages, 13 Figure

    Asservissement d'un bras robotique d'assistance à l'aide d'un système de stéréo vision artificielle et d'un suiveur de regard

    Get PDF
    RÉSUMÉ L’utilisation récente de bras robotiques sériels dans le but d’assister des personnes ayant des problèmes de motricités sévères des membres supérieurs soulève une nouvelle problématique au niveau de l’interaction humain-machine (IHM). En effet, jusqu’à maintenant le « joystick » est utilisé pour contrôler un bras robotiques d’assistance (BRA). Pour les utilisateurs ayant des problèmes de motricité sévères des membres supérieurs, ce type de contrôle n’est pas une option adéquate. Ce mémoire présente une autre option afin de pallier cette problématique. La solution présentée est composée de deux composantes principales. La première est une caméra de stéréo vision utilisée afin d’informer le BRA des objets présents dans son espace de travail. Il est important qu’un BRA soit conscient de ce qui est présent dans son espace de travail puisqu’il doit être en mesure d’éviter les objets non voulus lorsqu’il parcourt un trajet afin d’atteindre l’objet d’intérêt pour l'utilisateur. La deuxième composante est l’IHM qui est dans ce travail représentée par un suiveur de regard à bas coût. Effectivement, le suiveur de regard a été choisi puisque, généralement, les yeux d’un patient ayant des problèmes sévères de motricités au niveau des membres supérieurs restent toujours fonctionnels. Le suiveur de regard est généralement utilisé avec un écran pour des applications en 2D ce qui n’est pas intuitif pour l’utilisateur puisque celui-ci doit constamment regarder une reproduction 2D de la scène sur un écran. En d’autres mots, il faut rendre le suiveur de regard viable dans un environnement 3D sans l’utilisation d’un écran, ce qui a été fait dans ce mémoire. Un système de stéréo vision, un suiveur de regard ainsi qu’un BRA sont les composantes principales du système présenté qui se nomme PoGARA qui est une abréviation pour Point of Gaze Assistive Robotic Arm. En utilisant PoGARA, l’utilisateur a été capable d’atteindre et de prendre un objet pour 80% des essais avec un temps moyen de 13.7 secondes sans obstacles, 15.3 secondes avec un obstacle et 16.3 secondes avec deux obstacles.----------ABSTRACT The recent increased interest in the use of serial robots to assist individuals with severe upper limb disability brought-up an important issue which is the design of the right human computer interaction (HCI). Indeed, so far, the control of assistive robotic arms (ARA) is often done using a joystick. For the users who have a severe upper limb disability, this type of control is not a suitable option. In this master’s thesis, a novel solution is presented to overcome this issue. The developed solution is composed of two main components. The first one is a stereo vision system which is used to inform the ARA of the content of its workspace. It is important for the ARA to be aware of what is present in its workspace since it needs to avoid the unwanted objects while it is on its way to grasp the object of interest. The second component is the actual HCI, where an eye tracker is used. Indeed, the eye tracker was chosen since the eyes, often, remain functional even for patients with severe upper limb disability. However, usually, low-cost, commercially available eye trackers are mainly designed for 2D applications with a screen which is not intuitive for the user since he needs to constantly watch a reproduction of the scene on a 2D screen instead of the 3D scene itself. In other words, the eye tracker needs to be made viable for usage in a 3D environment without the use of a screen. This was achieved in this master thesis work. A stereo vision system, an eye tracker as well as an ARA are the main components of the developed system named PoGARA which is short for Point of Gaze Assistive Robotic Arm. Using PoGARA, during the tests, the user was able to reach and grasp an object for 80% of the trials with an average time of 13.7 seconds without obstacles, 15.3 seconds with one obstacles and 16.3 seconds with two obstacles

    Semi-Autonomous Control of an Exoskeleton using Computer Vision

    Get PDF
    • …
    corecore