10 research outputs found

    Vehicle-based modelling of traffic . Theory and application to environmental impact modelling

    Get PDF
    This dissertation addresses vehicle-based approaches to traffic flow modelling. Having regard to the inherent dynamic nature of traffic, the investigations are mainly focused on the question, how this is captured by different model classes. In the first part, the dynamics of a microscopic car-following model (SKM), presented in, is studied by means of computer simulations and analytical calculations. A classification of the model's behaviour is given with respect to the stability of high-flow states and the outflow from jam. The effects of anticipatory driving on the model's dynamics is explored, yielding results valid in general for this model class. In the second part, a new approach is introduced based on queueing theory. It can be regarded as a microscopic implementation of a state-dependent queueing model, using coupled queues where the service rates additionally depend on the conditions downstream. The concept is shown to reproduce the dynamics of free flow and wide-moving jams. This is demonstrated by comparison with the SKM and real world measurements. An analytical treatment is given as well. The phenomena of boundary induced phase transitions is further addressed, giving the complete phase diagrams of both models. Finally, the application of the queueing approach within simulation-based traffic assignment is demonstrated in regard to environmental impact modelling

    Uncertainty propagation from the cell transmission traffic flow model to emission predictions: a data-driven approach

    Get PDF
    Road traffic exhaust emission predictions are used to inform transport policy and investment decisions aimed at reducing emissions and achieving sustainable mobility. Emission predictions are also used as inputs when modeling air quality and human exposure to traffic-related air pollutants. To be effective, such policies and/or integration must be based on robust models that not only provide point-based predictions but also inform these with an interval of confidence that properly accounts for the propagation of uncertainties through the complex chain of models involved. This paper develops a data-driven methodological framework that enables calculating the uncertainty in average speed–based emission predictions induced by uncertainty in its traffic data inputs, which are most often predictions (or outputs) of traffic flow models. An ensemble-based optimisation approach is used to estimate both calibration and validation errors arising from uncertainty in the structure and parameterisation of the cell transmission model, a discretised first-order macroscopic traffic flow model that is often integrated with average speed–based emission models. A Monte Carlo sampling approach is proposed to propagate the uncertainty in traffic flow inputs to emission predictions. To ensure transferability of findings, this methodology has been tested using multiple real data sets on three motorway road networks, one of which operates under variable speed limits

    Uncertainties and Errors in Predicting Vehicle Exhaust Emissions using Traffic Flow Models

    Get PDF
    Vehicle exhaust emissions predicted based on the outputs of traffic flow models are used directly to calculate traffic-related emissions, but also indirectly as input to 'air quality - human exposure' models. Both of which inform transport and environmental policies aimed at achieving sustainable mobility. To be effective, these must be based on robust modelling approaches that not only provide point-based emission predictions, but also inform these with an interval of confidence that properly accounts for the propagation of uncertainties and errors through the complex chain of models involved. This research develops a data-driven methodological framework to probabilistic average speed-based emission predictions using two widely deployed macroscopic traffic flow models. These are the Cell Transmission Model (CTM), a discretised first-order LWR-type model, and METANET, a discretised second-order Payne-type model. Studying both allows quantitative comparison in their application to predicting emissions. While this research discusses all potential sources of uncertainty in this modelling chain, it focusses on those arising from the traffic flow modelling output. The methodology starts with an ensemble-based optimisation approach to estimate both calibration and validation prediction errors in the traffic flow model, and then proposes a Monte Carlo sampling approach to propagate these to emission predictions. This allows predicting emissions alongside their upper and lower bounds for any time period and road network, at different levels of detail. To ensure transferability of findings, this methodology has been tested on three motorway road networks, one of which operates under Variable Speed Limits (VSL). This permits the quantitative assessment of VSL-modified traffic flow models. In the results of this research, emissions of Oxides of Nitrogen (NOx) and uncertainty associated with their prediction are specifically reported for each road network under study. Finally, this research argues that the methodological framework developed can (and should) be applied to any other (relatively) simple or complex integrated 'traffic flow - emission' modelling chain used as part of policy and decision making process

    Integrated traffic flow and emission control based on FASTLANE and the multi-class VT-macro model

    No full text
    corecore