550 research outputs found

    The challenge of advanced model-based fdir techniques for aerospace systems: the 2011 situation

    Full text link
    For aerospace systems, advanced model-based Fault Detection, Identification, and Recovery (FDIR) challenges range from predesign and design stages for upcoming and new programs up to the improvement of the performance of in-service flying systems. However, today, their application to real aerospace world has remained extremely limited. The paper underlines the reasons for a widening gap between the advanced scientific FDIR methods being developed by the academic community and technological solutions demanded by the aerospace industry

    Rocket Testing and Integrated System Health Management

    Get PDF
    Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing

    The Future Flight Deck: Modelling Dual, Single and Distributed Crewing Options

    Get PDF
    It is argued that the barrier to single pilot operation is not the technology, but the failure to consider the whole socio-technical system. To better understand the socio-technical system we model alternative single pilot operations using Cognitive Work Analysis (CWA) and analyse those models using Social Network Analysis (SNA). Four potential models of single pilot operations were compared to existing two pilot operations. Using SOCA-CAT from CWA, we were able to identify the potential functional loading and interactions between networks of agents. The interactions formed the basis on the SNA. These analyses potentially form the basis for distributed system architecture for the operation of a future aircraft. The findings from the models suggest that distributed crewing option could be at least as resilient, in network architecture terms, as the current dual crewing operations
    • …
    corecore