1,225 research outputs found

    Recent research on flexible fixtures for manufacturing processes

    Get PDF
    Fixtures, are used to fixate, position and support workpieces, and form a crucial tool in manufacturing. Their performance influences the manufacturing (and assembly) process of a product. Furthermore, fixturing can form a significant portion of the needed investment and total process planning time for the manufacturing system. Many fixturing concepts, as contribution to increase the flexibility of the manufacturing system, are reported in the literature. The flexible fixturing designs can be classified into the following seven categories: modular fixtures, flexible pallet systems, sensor-based fixture design, phase-change based concepts, chuck-based concepts, pin-type array fixtures and automatically reconfigurable fixtures. It is observed that the more intelligent and automated fixturing systems are designed with the demands for automation in certain industries in mind. Furthermore, different fixturing solutions suit the engineering demands for different manufacturing areas, this means that for the foreseeable future all technologies will remain current. From the self-reconfigurable fixturing techniques a new fixturing capability is emerging: in process reconfigurability for the optimal placement of clamps and supports during the whole process time. These several concepts together with some recent patents are studied here. The paper concludes with some prospective research directions in the field of flexible fixturing

    EFFICIENCY OF FLEXIBLE FIXTURES: DESIGN AND CONTROL

    Get PDF
    The manufacturing industries have been using flexible production technologies to meet the demand for customisation. As a part of production, fixtures have remained limited to dedicated technologies, even though numerous flexible fixtures have been studied and proposed by both academia and industry. The integration of flexible fixtures has shown that such efforts did not yield the anticipated performance and resulted in inefficiencies of cost and time. The fundamental formulation of this thesis addresses this issue and aims to increase the efficiency of flexible fixtures.To realise this aim, the research in this thesis poses three research questions. The first research question investigates the efficiency description of flexible fixtures in terms of the criteria. Relative to this, the second research question investigates the use of efficiency metrics to integrate efficiency criteria into a design procedure. Once the efficiency and design aspects have been established, the third research question investigates the active control of flexible fixtures to increase their efficiency. The results of this thesis derive from the outcome of seven studies investigating the automotive and aerospace industries. The results that answer the first research question use five criteria to establish the efficiency of flexible fixtures. These are: fundamental, flexibility, cost, time and quality. By incorporating design characteristics in respect of production system paradigms, each criterion is elaborated upon using relevant sub-criteria and metrics. Moreover, a comparative design procedure is presented for the second research question and comprising four stages (including mechanical, control and software aspects). Initially, the design procedure proposes conceptual design and verification stages to determine the most promising flexible fixture for a target production system. By executing detailed design and verification, the design procedure enables a fixture designer to finalise the flexible fixture and determine its efficiency. Furthermore, a novel parallel kinematics machine is presented to demonstrate the applicability of the design procedure’s analytical steps and illustrate how appropriate kinematic structures can facilitate the efficiency-orientated design of flexible fixtures.Based on the correlation established by the controller software’s design procedure, the active control of flexible fixtures directly affects the quality criterion of flexible fixture efficiency. This provides the answer to the third research question, on general control strategies for active control of flexible fixtures. The introduction of a system model and manipulator dynamics proposes force and position control strategies. It is shown that any flexible fixture using a kinematic class can be controlled, to regulate the force and position of a workpiece and ensure that process nominals are preserved. Moreover, using both direct and indirect force control strategies, a flexible fixture’s role in active control can be expanded into a system of actively controlled fixtures that are useful in various processes. Finally, a position controller is presented which has the capacity to regulate both periodic and non-periodic signals. This controller uses an additional feedforward scheme (based on the Hilbert transform) in parallel with a feedback mechanism. Thus, the position controller enables flexible fixtures to regulate the position of a workpiece in respect of any kind of disturbance

    The walking robot project

    Get PDF
    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight

    Dynamic system characterization and design using mechanical impedance representations

    Full text link
    Vibration testing is a critical aspect in the qualification of fieldable hardware as dynamic environments are typically design drivers. However, it is difficult to provide representative boundary conditions for component testing and the presence of an ill-matched boundary condition can alter the test outcomes. To achieve more realistic boundary conditions, test fixtures could be strategically designed such that they emulate the impedance of the next level of assembly. The body of work presented herein proposes various strategies for matching the drive point impedance of a target frequency response function (FRF) using undamped lumped parameter emulators. Two primary techniques have been developed to accomplish this impedance matching: a constrained exhaustive search algorithm and a constrained optimization algorithm. The constrained exhaustive search exploits newly identified high and low frequency limits in order to minimize the number of parameters that must be searched. The optimization algorithm provides an innovative methodology for the identification of a comprehensive and bounded design space and presents a novel implementation of particle swarm optimization that produces an optimized set of parameters for every identified physically realizable topology. This resultant emulator design space provides a basis from which low-complexity, low-cost fixtures can be constructed, thus offering an attainable path for better matching of boundary conditions and more representative vibration testing

    Fixturing information models in data model-driven product design and manufacture

    Get PDF
    In order to ensure effective decisions are made at each stage in the design and manufacture process, it is important that software tools should provide sufficient information to support the decision making of both designers and manufacturing engineers. This requirement can be applied to fixturing where research to date has typically focused on narrow functional support issues in fixture design and planning. The research reported in this thesis has explored how models of fixturing information can be defined, within an integrated information environment, and utilised across product design as well as manufacture. The work has focused on the definition of fixturing information within the context of a wide-ranging model that can capture the full capability of a manufacturing facility. [Continues.
    • …
    corecore