2,768 research outputs found

    Bi-(N-) cluster editing and its biomedical applications

    Get PDF
    The extremely fast advances in wet-lab techniques lead to an exponential growth of heterogeneous and unstructured biological data, posing a great challenge to data integration in nowadays system biology. The traditional clustering approach, although widely used to divide the data into groups sharing common features, is less powerful in the analysis of heterogeneous data from n different sources (n _ 2). The co-clustering approach has been widely used for combined analyses of multiple networks to address the challenge of heterogeneity. In this thesis, novel methods for the co-clustering of large scale heterogeneous data sets are presented in the software package n-CluE: one exact algorithm and two heuristic algorithms based on the model of bi-/n-cluster editing by modeling the input as n-partite graphs and solving the clustering problem with various strategies. In the first part of the thesis, the complexity and the fixed-parameter tractability of the extended bicluster editing model with relaxed constraints are investigated, namely the ?-bicluster editing model and its NP-hardness is proven. Based on the results of this analysis, three strategies within the n-CluE software package are then established and discussed, together with the evaluations on performances and the systematic comparisons against other algorithms of the same type in solving bi-/n-cluster editing problem. To demonstrate the practical impact, three real-world analyses using n-CluE are performed, including (a) prediction of novel genotype-phenotype associations by clustering the data from Genome-Wide Association Studies; (b) comparison between n-CluE and eight other biclustering tools on GEO Omnibus microarray data sets; (c) drug repositioning predictions by co-clustering on drug, gene and disease networks. The outstanding performance of n-CluE in the real-world applications shows its strength and flexibility in integrating heterogeneous data and extracting biological relevant information in bioinformatic analyses.Die enormen Fortschritte im Bereich Labortechnik haben in jüngster Zeit zu einer exponentiell wachsenden Menge an heterogenen und unstrukturierten Daten geführt. Dies stellt eine große Herausforderung für systembiologische Forschung dar, innerhalb derer diese Datenmengen durch Datenintegration und Datamining zusammengefasst und in Kombination analysiert werden. Traditionelles Clustering ist eine vielseitig eingesetzte Methode, um Entitäten innerhalb grosser Datenmengen bezüglich ihrer Ähnlichkeit bestimmter Attribute zu gruppieren (“clustern„). Beim Clustern von heterogenen Daten aus n (n > 2) unterschiedlichen Quellen zeigen traditionelle Clusteringmethoden jedoch Schwächen. In solchen Fällen bieten Co-clusteringmethoden dadurch Vorteile, dass sie Datensätze gleichzeitig partitionieren können. In dieser Dissertation stelle ich neue Clusteringmethoden vor, die in der Software n-CluE zusammengeführt sind. Diese neuen Methoden wurden aus dem bi-/n-cluster editing heraus entwickelt und lösen durch Transformation der Eingangsdatensätze in n-partite Graphen mit verschiedenen Strategien das zugrundeliegende Clusteringproblem. Diese Dissertation ist in zwei verschiedene Teile gegliedert. Der erste Teil befasst sich eingehend mit der Komplexitätanalyse verschiedener erweiterter bicluster editing Modelle, die sog. ?-bicluster editing Modelle und es wird der Beweis der NP-Schwere erbracht. Basierend auf diesen theoretischen Gesichtspunkten präsentiere ich im zweiten Teil drei unterschiedliche Algorithmen, einen exakten Algorithmus und zwei Heuristiken und demonstriere ihre Leistungsfähigkeit und Robustheit im Vergleich mit anderen algorithmischen Herangehensweisen. Die Stärken von n-CluE werden anhand von drei realen Anwendungsbeispielen untermauert: (a) Die Vorhersage neuartiger Genotyp-Phänotyp-Assoziationen durch Biclustering-Analyse von Daten aus genomweiten Assoziationsstudien (GWAS);(b) Der Vergleich zwischen n-CluE und acht weiteren Softwarepaketen anhand von Bicluster-Analysen von Microarraydaten aus den Gene Expression Omnibus (GEO); (c) Die Vorhersage von Medikamenten-Repositionierung durch integrierte Analyse von Medikamenten-, Gen- und Krankeitsnetzwerken. Die Resultate zeigen eindrucksvoll die Stärken der n-CluE Software. Das Ergebnis ist eine leistungsstarke, robuste und flexibel erweiterbare Implementierung des Biclustering-Theorems zur Integration grosser heterogener Datenmengen für das Extrahieren biologisch relevanter Ergebnisse im Rahmen von bioinformatischen Studien

    AutoSOME: a clustering method for identifying gene expression modules without prior knowledge of cluster number

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clustering the information content of large high-dimensional gene expression datasets has widespread application in "omics" biology. Unfortunately, the underlying structure of these natural datasets is often fuzzy, and the computational identification of data clusters generally requires knowledge about cluster number and geometry.</p> <p>Results</p> <p>We integrated strategies from machine learning, cartography, and graph theory into a new informatics method for automatically clustering self-organizing map ensembles of high-dimensional data. Our new method, called AutoSOME, readily identifies discrete and fuzzy data clusters without prior knowledge of cluster number or structure in diverse datasets including whole genome microarray data. Visualization of AutoSOME output using network diagrams and differential heat maps reveals unexpected variation among well-characterized cancer cell lines. Co-expression analysis of data from human embryonic and induced pluripotent stem cells using AutoSOME identifies >3400 up-regulated genes associated with pluripotency, and indicates that a recently identified protein-protein interaction network characterizing pluripotency was underestimated by a factor of four.</p> <p>Conclusions</p> <p>By effectively extracting important information from high-dimensional microarray data without prior knowledge or the need for data filtration, AutoSOME can yield systems-level insights from whole genome microarray expression studies. Due to its generality, this new method should also have practical utility for a variety of data-intensive applications, including the results of deep sequencing experiments. AutoSOME is available for download at <url>http://jimcooperlab.mcdb.ucsb.edu/autosome</url>.</p

    From condition-specific interactions towards the differential complexome of proteins

    Get PDF
    While capturing the transcriptomic state of a cell is a comparably simple effort with modern sequencing techniques, mapping protein interactomes and complexomes in a sample-specific manner is currently not feasible on a large scale. To understand crucial biological processes, however, knowledge on the physical interplay between proteins can be more interesting than just their mere expression. In this thesis, we present and demonstrate four software tools that unlock the cellular wiring in a condition-specific manner and promise a deeper understanding of what happens upon cell fate transitions. PPIXpress allows to exploit the abundance of existing expression data to generate specific interactomes, which can even consider alternative splicing events when protein isoforms can be related to the presence of causative protein domain interactions of an underlying model. As an addition to this work, we developed the convenient differential analysis tool PPICompare to determine rewiring events and their causes within the inferred interaction networks between grouped samples. Furthermore, we present a new implementation of the combinatorial protein complex prediction algorithm DACO that features a significantly reduced runtime. This improvement facilitates an application of the method for a large number of samples and the resulting sample-specific complexes can ultimately be assessed quantitatively with our novel differential protein complex analysis tool CompleXChange.Das Transkriptom einer Zelle ist mit modernen Sequenzierungstechniken vergleichsweise einfach zu erfassen. Die Ermittlung von Proteininteraktionen und -komplexen wiederum ist in großem Maßstab derzeit nicht möglich. Um wichtige biologische Prozesse zu verstehen, kann das Zusammenspiel von Proteinen jedoch erheblich interessanter sein als deren reine Expression. In dieser Arbeit stellen wir vier Software-Tools vor, die es ermöglichen solche Interaktionen zustandsbezogen zu betrachten und damit ein tieferes Verständnis darüber versprechen, was in der Zelle bei Veränderungen passiert. PPIXpress ermöglicht es vorhandene Expressionsdaten zu nutzen, um die aktiven Interaktionen in einem biologischen Kontext zu ermitteln. Wenn Proteinvarianten mit Interaktionen von Proteindomänen in Verbindung gebracht werden können, kann hierbei sogar alternatives Spleißen berücksichtigen werden. Als Ergänzung dazu haben wir das komfortable Differenzialanalyse-Tool PPICompare entwickelt, welches Veränderungen des Interaktoms und deren Ursachen zwischen gruppierten Proben bestimmen kann. Darüber hinaus stellen wir eine neue Implementierung des Proteinkomplex-Vorhersagealgorithmus DACO vor, die eine deutlich reduzierte Laufzeit aufweist. Diese Verbesserung ermöglicht die Anwendung der Methode auf eine große Anzahl von Proben. Die damit bestimmten probenspezifischen Komplexe können schließlich mit unserem neuartigen Differenzialanalyse-Tool CompleXChange quantitativ bewertet werden

    Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration

    Get PDF
    Metabolomics is a rapidly growing field consisting of the analysis of a large number of metabolites at a system scale. The two major goals of metabolomics are the identification of the metabolites characterizing each organism state and the measurement of their dynamics under different situations (e.g. pathological conditions, environmental factors). Knowledge about metabolites is crucial for the understanding of most cellular phenomena, but this information alone is not sufficient to gain a comprehensive view of all the biological processes involved. Integrated approaches combining metabolomics with transcriptomics and proteomics are thus required to obtain much deeper insights than any of these techniques alone. Although this information is available, multilevel integration of different 'omics' data is still a challenge. The handling, processing, analysis and integration of these data require specialized mathematical, statistical and bioinformatics tools, and several technical problems hampering a rapid progress in the field exist. Here, we review four main tools for number of users or provided features (MetaCore(TM), MetaboAnalyst, InCroMAP and 3Omics) out of the several available for metabolomic data analysis and integration with other 'omics' data, highlighting their strong and weak aspects; a number of related issues affecting data analysis and integration are also identified and discussed. Overall, we provide an objective description of how some of the main currently available software packages work, which may help the experimental practitioner in the choice of a robust pipeline for metabolomic data analysis and integration

    Network-based methods for biological data integration in precision medicine

    Full text link
    [eng] The vast and continuously increasing volume of available biomedical data produced during the last decades opens new opportunities for large-scale modeling of disease biology, facilitating a more comprehensive and integrative understanding of its processes. Nevertheless, this type of modelling requires highly efficient computational systems capable of dealing with such levels of data volumes. Computational approximations commonly used in machine learning and data analysis, namely dimensionality reduction and network-based approaches, have been developed with the goal of effectively integrating biomedical data. Among these methods, network-based machine learning stands out due to its major advantage in terms of biomedical interpretability. These methodologies provide a highly intuitive framework for the integration and modelling of biological processes. This PhD thesis aims to explore the potential of integration of complementary available biomedical knowledge with patient-specific data to provide novel computational approaches to solve biomedical scenarios characterized by data scarcity. The primary focus is on studying how high-order graph analysis (i.e., community detection in multiplex and multilayer networks) may help elucidate the interplay of different types of data in contexts where statistical power is heavily impacted by small sample sizes, such as rare diseases and precision oncology. The central focus of this thesis is to illustrate how network biology, among the several data integration approaches with the potential to achieve this task, can play a pivotal role in addressing this challenge provided its advantages in molecular interpretability. Through its insights and methodologies, it introduces how network biology, and in particular, models based on multilayer networks, facilitates bringing the vision of precision medicine to these complex scenarios, providing a natural approach for the discovery of new biomedical relationships that overcomes the difficulties for the study of cohorts presenting limited sample sizes (data-scarce scenarios). Delving into the potential of current artificial intelligence (AI) and network biology applications to address data granularity issues in the precision medicine field, this PhD thesis presents pivotal research works, based on multilayer networks, for the analysis of two rare disease scenarios with specific data granularities, effectively overcoming the classical constraints hindering rare disease and precision oncology research. The first research article presents a personalized medicine study of the molecular determinants of severity in congenital myasthenic syndromes (CMS), a group of rare disorders of the neuromuscular junction (NMJ). The analysis of severity in rare diseases, despite its importance, is typically neglected due to data availability. In this study, modelling of biomedical knowledge via multilayer networks allowed understanding the functional implications of individual mutations in the cohort under study, as well as their relationships with the causal mutations of the disease and the different levels of severity observed. Moreover, the study presents experimental evidence of the role of a previously unsuspected gene in NMJ activity, validating the hypothetical role predicted using the newly introduced methodologies. The second research article focuses on the applicability of multilayer networks for gene priorization. Enhancing concepts for the analysis of different data granularities firstly introduced in the previous article, the presented research provides a methodology based on the persistency of network community structures in a range of modularity resolution, effectively providing a new framework for gene priorization for patient stratification. In summary, this PhD thesis presents major advances on the use of multilayer network-based approaches for the application of precision medicine to data-scarce scenarios, exploring the potential of integrating extensive available biomedical knowledge with patient-specific data

    Book of Abstracts XVIII Congreso de Biometría CEBMADRID

    Get PDF
    Abstracts of the XVIII Congreso de Biometría CEBMADRID held from 25 to 27 May in MadridInteractive modelling and prediction of patient evolution via multistate models / Leire Garmendia Bergés, Jordi Cortés Martínez and Guadalupe Gómez Melis : This research was funded by the Ministerio de Ciencia e Innovación (Spain) [PID2019104830RBI00]; and the Generalitat de Catalunya (Spain) [2017SGR622 and 2020PANDE00148].Operating characteristics of a model-based approach to incorporate non-concurrent controls in platform trials / Pavla Krotka, Martin Posch, Marta Bofill Roig : EU-PEARL (EU Patient-cEntric clinicAl tRial pLatforms) project has received funding from the Innovative Medicines Initiative (IMI) 2 Joint Undertaking (JU) under grant agreement No 853966. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA and Children’s Tumor Foundation, Global Alliance for TB Drug Development non-profit organisation, Spring works Therapeutics Inc.Modeling COPD hospitalizations using variable domain functional regression / Pavel Hernández Amaro, María Durbán Reguera, María del Carmen Aguilera Morillo, Cristobal Esteban Gonzalez, Inma Arostegui : This work is supported by the grant ID2019-104901RB-I00 from the Spanish Ministry of Science, Innovation and Universities MCIN/AEI/10.13039/501100011033.Spatio-temporal quantile autoregression for detecting changes in daily temperature in northeastern Spain / Jorge Castillo-Mateo, Alan E. Gelfand, Jesús Asín, Ana C. Cebrián / Spatio-temporal quantile autoregression for detecting changes in daily temperature in northeastern Spain : This work was partially supported by the Ministerio de Ciencia e Innovación under Grant PID2020-116873GB-I00; Gobierno de Aragón under Research Group E46_20R: Modelos Estocásticos; and JC-M was supported by Gobierno de Aragón under Doctoral Scholarship ORDEN CUS/581/2020.Estimation of the area under the ROC curve with complex survey data / Amaia Iparragirre, Irantzu Barrio, Inmaculada Arostegui : This work was financially supported in part by IT1294-19, PID2020-115882RB-I00, KK-2020/00049. The work of AI was supported by PIF18/213.INLAMSM: Adjusting multivariate lattice models with R and INLA / Francisco Palmí Perales, Virgilio Gómez Rubio and Miguel Ángel Martínez Beneito : This work has been supported by grants PPIC-2014-001-P and SBPLY/17/180501/000491, funded by Consejería de Educación, Cultura y Deportes (Junta de Comunidades de Castilla-La Mancha, Spain) and FEDER, grant MTM2016-77501-P, funded by Ministerio de Economía y Competitividad (Spain), grant PID2019-106341GB-I00 from Ministerio de Ciencia e Innovación (Spain) and a grant to support research groups by the University of Castilla-La Mancha (Spain). F. Palmí-Perales has been supported by a Ph.D. scholarship awarded by the University of Castilla-La Mancha (Spain)

    Semantic systems biology of prokaryotes : heterogeneous data integration to understand bacterial metabolism

    Get PDF
    The goal of this thesis is to improve the prediction of genotype to phenotypeassociations with a focus on metabolic phenotypes of prokaryotes. This goal isachieved through data integration, which in turn required the development ofsupporting solutions based on semantic web technologies. Chapter 1 providesan introduction to the challenges associated to data integration. Semantic webtechnologies provide solutions to some of these challenges and the basics ofthese technologies are explained in the Introduction. Furthermore, the ba-sics of constraint based metabolic modeling and construction of genome scalemodels (GEM) are also provided. The chapters in the thesis are separated inthree related topics: chapters 2, 3 and 4 focus on data integration based onheterogeneous networks and their application to the human pathogen M. tu-berculosis; chapters 5, 6, 7, 8 and 9 focus on the semantic web based solutionsto genome annotation and applications thereof; and chapter 10 focus on thefinal goal to associate genotypes to phenotypes using GEMs. Chapter 2 provides the prototype of a workflow to efficiently analyze in-formation generated by different inference and prediction methods. This me-thod relies on providing the user the means to simultaneously visualize andanalyze the coexisting networks generated by different algorithms, heteroge-neous data sets, and a suite of analysis tools. As a show case, we have ana-lyzed the gene co-expression networks of M. tuberculosis generated using over600 expression experiments. Hereby we gained new knowledge about theregulation of the DNA repair, dormancy, iron uptake and zinc uptake sys-tems. Furthermore, it enabled us to develop a pipeline to integrate ChIP-seqdat and a tool to uncover multiple regulatory layers. In chapter 3 the prototype presented in chapter 2 is further developedinto the Synchronous Network Data Integration (SyNDI) framework, whichis based on Cytoscape and Galaxy. The functionality and usability of theframework is highlighted with three biological examples. We analyzed thedistinct connectivity of plasma metabolites in networks associated with highor low latent cardiovascular disease risk. We obtained deeper insights froma few similar inflammatory response pathways in Staphylococcus aureus infec-tion common to human and mouse. We identified not yet reported regulatorymotifs associated with transcriptional adaptations of M. tuberculosis.In chapter 4 we present a review providing a systems level overview ofthe molecular and cellular components involved in divalent metal homeosta-sis and their role in regulating the three main virulence strategies of M. tu-berculosis: immune modulation, dormancy and phagosome escape. With theuse of the tools presented in chapter 2 and 3 we identified a single regulatorycascade for these three virulence strategies that respond to limited availabilityof divalent metals in the phagosome. The tools presented in chapter 2 and 3 achieve data integration throughthe use of multiple similarity, coexistence, coexpression and interaction geneand protein networks. However, the presented tools cannot store additional(genome) annotations. Therefore, we applied semantic web technologies tostore and integrate heterogeneous annotation data sets. An increasing num-ber of widely used biological resources are already available in the RDF datamodel. There are however, no tools available that provide structural overviewsof these resources. Such structural overviews are essential to efficiently querythese resources and to assess their structural integrity and design. There-fore, in chapter 5, I present RDF2Graph, a tool that automatically recoversthe structure of an RDF resource. The generated overview enables users tocreate complex queries on these resources and to structurally validate newlycreated resources. Direct functional comparison support genotype to phenotype predictions.A prerequisite for a direct functional comparison is consistent annotation ofthe genetic elements with evidence statements. However, the standard struc-tured formats used by the public sequence databases to present genome an-notations provide limited support for data mining, hampering comparativeanalyses at large scale. To enable interoperability of genome annotations fordata mining application, we have developed the Genome Biology OntologyLanguage (GBOL) and associated infrastructure (GBOL stack), which is pre-sented in chapter 6. GBOL is provenance aware and thus provides a consistentrepresentation of functional genome annotations linked to the provenance.The provenance of a genome annotation describes the contextual details andderivation history of the process that resulted in the annotation. GBOL is mod-ular in design, extensible and linked to existing ontologies. The GBOL stackof supporting tools enforces consistency within and between the GBOL defi-nitions in the ontology. Based on GBOL, we developed the genome annotation pipeline SAPP (Se-mantic Annotation Platform with Provenance) presented in chapter 7. SAPPautomatically predicts, tracks and stores structural and functional annotationsand associated dataset- and element-wise provenance in a Linked Data for-mat, thereby enabling information mining and retrieval with Semantic Webtechnologies. This greatly reduces the administrative burden of handling mul-tiple analysis tools and versions thereof and facilitates multi-level large scalecomparative analysis. In turn this can be used to make genotype to phenotypepredictions. The development of GBOL and SAPP was done simultaneously. Duringthe development we realized that we had to constantly validated the data ex-ported to RDF to ensure coherence with the ontology. This was an extremelytime consuming process and prone to error, therefore we developed the Em-pusa code generator. Empusa is presented in chapter 8. SAPP has been successfully used to annotate 432 sequenced Pseudomonas strains and integrate the resulting annotation in a large scale functional com-parison using protein domains. This comparison is presented in chapter 9.Additionally, data from six metabolic models, nearly a thousand transcrip-tome measurements and four large scale transposon mutagenesis experimentswere integrated with the genome annotations. In this way, we linked gene es-sentiality, persistence and expression variability. This gave us insight into thediversity, versatility and evolutionary history of the Pseudomonas genus, whichcontains some important pathogens as well some useful species for bioengi-neering and bioremediation purposes. Genome annotation can be used to create GEM, which can be used to betterlink genotypes to phenotypes. Bio-Growmatch, presented in chapter 10, istool that can automatically suggest modification to improve a GEM based onphenotype data. Thereby integrating growth data into the complete processof modelling the metabolism of an organism. Chapter 11 presents a general discussion on how the chapters contributedthe central goal. After which I discuss provenance requirements for data reuseand integration. I further discuss how this can be used to further improveknowledge generation. The acquired knowledge could, in turn, be used to de-sign new experiments. The principles of the dry-lab cycle and how semantictechnologies can contribute to establish these cycles are discussed in chapter11. Finally a discussion is presented on how to apply these principles to im-prove the creation and usability of GEM’s.</p

    Multimodal image analysis of the human brain

    Get PDF
    Gedurende de laatste decennia heeft de snelle ontwikkeling van multi-modale en niet-invasieve hersenbeeldvorming technologieën een revolutie teweeg gebracht in de mogelijkheid om de structuur en functionaliteit van de hersens te bestuderen. Er is grote vooruitgang geboekt in het beoordelen van hersenschade door gebruik te maken van Magnetic Reconance Imaging (MRI), terwijl Elektroencefalografie (EEG) beschouwd wordt als de gouden standaard voor diagnose van neurologische afwijkingen. In deze thesis focussen we op de ontwikkeling van nieuwe technieken voor multi-modale beeldanalyse van het menselijke brein, waaronder MRI segmentatie en EEG bronlokalisatie. Hierdoor voegen we theorie en praktijk samen waarbij we focussen op twee medische applicaties: (1) automatische 3D MRI segmentatie van de volwassen hersens en (2) multi-modale EEG-MRI data analyse van de hersens van een pasgeborene met perinatale hersenschade. We besteden veel aandacht aan de verbetering en ontwikkeling van nieuwe methoden voor accurate en ruisrobuuste beeldsegmentatie, dewelke daarna succesvol gebruikt worden voor de segmentatie van hersens in MRI van zowel volwassen als pasgeborenen. Daarenboven ontwikkelden we een geïntegreerd multi-modaal methode voor de EEG bronlokalisatie in de hersenen van een pasgeborene. Deze lokalisatie wordt gebruikt voor de vergelijkende studie tussen een EEG aanval bij pasgeborenen en acute perinatale hersenletsels zichtbaar in MRI
    corecore