6,638 research outputs found

    Integrated Production-Distribution Planning with Considering Preventive Maintenance

    Get PDF
    The preventive maintenance activity is important thing in production system especially for a continuous production process, for example in fertilizer industry. Therefore, it has to be considered in production-distribution planning. This paper considers the interval of production facility’s preventive maintenance in production-distribution planning of multi echelon supply chain system which consists of a manufacturer with a continuous production process, a distribution center, a number of distributors and a number of retailers. The problem address in this paper is how to determine coordinated productiondistribution policies that considers the interval of production facility’s preventive maintenance, and customer demand only occurred at retailers and it fluctuates by time. Based on model of Santoso, et al. (2007), using the periodic review inventory model and a coordinated production and replenishment policies that are decided by central planning office and it must be obeyed by all entities of multi-echelon supply chain, the integrated production-distribution planning model is developed to determine the production and replenishment policies of all echelon in the supply chain system in order to minimize total system cost during planning horizon. Total system cost consists of set-up/ordering cost, maintenance cost, holding cost, outsourcing cost and transportation cost at all of entities. With considering preventive maintenance and there is one production run over the planning horizon, the replenishment cycle at distribution center, distributors and retailers that are found out are greater than the basic model. Also, the multiplication of replenishment cycle at distribution center in production cycle that is found out is greater than the basic model but the multiplication of replenishment cycle at retailers in its distributor are smaller than the basic model

    Bütünleşik tedarik zinciri çizelgeleme modelleri: Bir literatür taraması

    Get PDF
    Research on integration of supply chain and scheduling is relatively recent, and number of studies on this topic is increasing. This study provides a comprehensive literature survey about Integrated Supply Chain Scheduling (ISCS) models to help identify deficiencies in this area. For this purpose, it is thought that this study will contribute in terms of guiding researchers working in this field. In this study, existing literature on ISCS problems are reviewed and summarized by introducing the new classification scheme. The studies were categorized by considering the features such as the number of customers (single or multiple), product lifespan (limited or unlimited), order sizes (equal or general), vehicle characteristics (limited/sufficient and homogeneous/heterogeneous), machine configurations and number of objective function (single or multi objective). In addition, properties of mathematical models applied for problems and solution approaches are also discussed.Bütünleşik Tedarik Zinciri Çizelgeleme (BTZÇ) üzerine yapılan araştırmalar nispeten yenidir ve bu konu üzerine yapılan çalışma sayısı artmaktadır. Bu çalışma, bu alandaki eksiklikleri tespit etmeye yardımcı olmak için BTZÇ modelleri hakkında kapsamlı bir literatür araştırması sunmaktadır. Bu amaçla, bu çalışmanın bu alanda çalışan araştırmacılara rehberlik etmesi açısından katkı sağlayacağı düşünülmektedir. Bu çalışmada, BTZÇ problemleri üzerine mevcut literatür gözden geçirilmiş ve yeni sınıflandırma şeması tanıtılarak çalışmalar özetlenmiştir. Çalışmalar; tek veya çoklu müşteri sayısı, sipariş büyüklüğü tipi (eşit veya genel), ürün ömrü (sınırlı veya sınırsız), araç karakteristikleri (sınırlı/yeterli ve homojen/heterojen), makine konfigürasyonları ve amaç fonksiyonu sayısı (tek veya çok amaçlı) gibi özellikler dikkate alınarak kategorize edildi. Ayrıca problemler için uygulanan matematiksel modellerin özellikleri ve çözüm yaklaşımları da tartışılmıştır

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    Production and Delivery Batch Scheduling with Multiple Due Dates to Minimize Total Cost

    Get PDF
    This paper addresses an integrated production and delivery batch scheduling problem for a make-to-order environment over daily time period, where the holding costs of in-process and completed parts at a supplier location and of completed parts at a manufacturer location are distinguished. All orders of parts with different due dates from the manufacturer arrive at the same time. The parts are produced in production batches and subsequently the completed parts are delivered in delivery batches using a capacitated vehicle in order to be received at the respective due dates. This study was aimed at finding an integrated schedule of production and delivery batches so as to meet the due date at minimum total cost consisting of the corresponding holding cost and delivery cost. The holding cost is a derivation of the so-called actual flow time (AFT), while the delivery cost is assumed to be proportional to the number of deliveries. The problems can be formulated as an integer non-linear programming model, and the global optimal solution can be obtained using optimization software. A heuristic algorithm is proposed to cope with the computational time problem using software. The numerical experiences show that the proposed algorithm yields near global optimal solutions

    Integrating Preventive Maintenance Scheduling as Probability Machine Failure and Batch Production Scheduling

    Full text link
    This paper discusses integrated model of batch production scheduling and machine maintenance scheduling. Batch production scheduling uses minimize total actual flow time criteria and machine maintenance scheduling uses the probability of machine failure based on Weibull distribution. The model assumed no nonconforming parts in a planning horizon. The model shows an increase in the number of the batch (length of production run) up to a certain limit will minimize the total actual flow time. Meanwhile, an increase in the length of production run will implicate an increase in the number of PM. An example was given to show how the model and algorithm work

    Solving for an Optimal Batch Size for a Single Machine Using the Closed-form Equations to Minimize Inventory Cost

    Get PDF
    Batch sizing strategy in the manufacturing system has significant impacts on the production performance. In the previous research studies, researchers proposed complicated techniques such as optimization models, simulation, queuing theory, and complex algorithms to solve for the optimal batch size. Using those techniques are difficult for plant managers to calculate for the optimal batch size. Therefore, the closed-form optimal batch size equations are proposed to minimize inventory cost of 2 models. The first model is illustrated when the inventory cost is associated with holding cost but without setup cost. The second model is illustrated when inventory cost is associated with both holding cost and setup cost. Besides the optimal batch size calculation, the value of λ, which is the shadow price of the available setup time, is also solved for sensitivity analysis purpose. Application of the closed-form equation is provided with various parameters applied to different products. The results show that the proposed closed-form equations approach performs well and verifies the effectiveness of the approach
    corecore