47,478 research outputs found

    An optimal-control based integrated model of supply chain

    Get PDF
    Problems of supply chain scheduling are challenged by high complexity, combination of continuous and discrete processes, integrated production and transportation operations as well as dynamics and resulting requirements for adaptability and stability analysis. A possibility to address the above-named issues opens modern control theory and optimal program control in particular. Based on a combination of fundamental results of modern optimal program control theory and operations research, an original approach to supply chain scheduling is developed in order to answer the challenges of complexity, dynamics, uncertainty, and adaptivity. Supply chain schedule generation is represented as an optimal program control problem in combination with mathematical programming and interpreted as a dynamic process of operations control within an adaptive framework. The calculation procedure is based on applying Pontryagin’s maximum principle and the resulting essential reduction of problem dimensionality that is under solution at each instant of time. With the developed model, important categories of supply chain analysis such as stability and adaptability can be taken into consideration. Besides, the dimensionality of operations research-based problems can be relieved with the help of distributing model elements between an operations research (static aspects) and a control (dynamic aspects) model. In addition, operations control and flow control models are integrated and applicable for both discrete and continuous processes.supply chain, model of supply chain scheduling, optimal program control theory, Pontryagin’s maximum principle, operations research model,

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    Optimal dynamic operations scheduling for small-scale satellites

    Get PDF
    A satellite's operations schedule is crafted based on each subsystem/payload operational needs, while taking into account the available resources on-board. A number of operating modes are carefully designed, each one with a different operations plan that can serve emergency cases, reduced functionality cases, the nominal case, the end of mission case and so on. During the mission span, should any operations planning amendments arise, a new schedule needs to be manually developed and uplinked to the satellite during a communications' window. The current operations planning techniques over a reduced number of solutions while approaching operations scheduling in a rigid manner. Given the complexity of a satellite as a system as well as the numerous restrictions and uncertainties imposed by both environmental and technical parameters, optimising the operations scheduling in an automated fashion can over a flexible approach while enhancing the mission robustness. In this paper we present Opt-OS (Optimised Operations Scheduler), a tool loosely based on the Ant Colony System algorithm, which can solve the Dynamic Operations Scheduling Problem (DOSP). The DOSP is treated as a single-objective multiple constraint discrete optimisation problem, where the objective is to maximise the useful operation time per subsystem on-board while respecting a set of constraints such as the feasible operation timeslot per payload or maintaining the power consumption below a specific threshold. Given basic mission inputs such as the Keplerian elements of the satellite's orbit, its launch date as well as the individual subsystems' power consumption and useful operation periods, Opt-OS outputs the optimal ON/OFF state per subsystem per orbital time step, keeping each subsystem's useful operation time to a maximum while ensuring that constraints such as the power availability threshold are never violated. Opt-OS can provide the flexibility needed for designing an optimal operations schedule on the spot throughout any mission phase as well as the ability to automatically schedule operations in case of emergency. Furthermore, Opt-OS can be used in conjunction with multi-objective optimisation tools for performing full system optimisation. Based on the optimal operations schedule, subsystem design parameters are being optimised in order to achieve the maximal usage of the satellite while keeping its mass minimal

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Welcome to OR&S! Where students, academics and professionals come together

    Get PDF
    In this manuscript, an overview is given of the activities done at the Operations Research and Scheduling (OR&S) research group of the faculty of Economics and Business Administration of Ghent University. Unlike the book published by [1] that gives a summary of all academic and professional activities done in the field of Project Management in collaboration with the OR&S group, the focus of the current manuscript lies on academic publications and the integration of these published results in teaching activities. An overview is given of the publications from the very beginning till today, and some of the topics that have led to publications are discussed in somewhat more detail. Moreover, it is shown how the research results have been used in the classroom to actively involve students in our research activities

    Dynamic hybrid simulation of batch processes driven by a scheduling module

    Get PDF
    Simulation is now a CAPE tool widely used by practicing engineers for process design and control. In particular, it allows various offline analyses to improve system performance such as productivity, energy efficiency, waste reduction, etc. In this framework, we have developed the dynamic hybrid simulation environment PrODHyS whose particularity is to provide general and reusable object-oriented components dedicated to the modeling of devices and operations found in chemical processes. Unlike continuous processes, the dynamic simulation of batch processes requires the execution of control recipes to achieve a set of production orders. For these reasons, PrODHyS is coupled to a scheduling module (ProSched) based on a MILP mathematical model in order to initialize various operational parameters and to ensure a proper completion of the simulation. This paper focuses on the procedure used to generate the simulation model corresponding to the realization of a scenario described through a particular scheduling
    corecore